已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点测试47圆与方程 一、基础小题1圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()Ax2(y2)21 Bx2(y2)21C(x1)2(y3)21 Dx2(y3)21答案A解析设圆心坐标为(0,b),则由题意知1,解得b2,故圆的方程为x2(y2)21.2若曲线C:x2y22ax4ay5a240上所有的点均在第二象限内,则a的取值范围为()A(,2) B(,1)C(1,) D(2,)答案D解析曲线C的方程可以化为(xa)2(y2a)24,则该方程表示圆心为(a,2a),半径等于2的圆因为圆上的点均在第二象限,所以a2.3已知直线l:yx与圆C:(xa)2y21,则“a”是“直线l与圆C相切”的()A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分又不必要条件答案A解析直线l:yx与圆C:(xa)2y21相切的充要条件是圆心C到直线l的距离等于半径,即1,解得a.故由a可推得直线l与圆C相切;反之,若直线l与圆C相切,不能推得a,即“a”是“直线l与圆C相切”的充分而不必要条件4对任意的实数k,直线ykx1与圆x2y22x20的位置关系是()A相离 B相切C相交 D以上三个选项均有可能答案C解析直线ykx1恒经过点A(0,1),02(1)220210,点A在圆内,故直线ykx1与圆x2y22x20相交,故选C.5设圆的方程是x2y22ax2y(a1)20,若0a1,则原点与该圆的位置关系是()A原点在圆上 B原点在圆外C原点在圆内 D不确定答案B解析将圆的方程化成标准方程为(xa)2(y1)22a,因为0a0,即,所以原点在圆外6若圆x2y2a2与圆x2y2ay60的公共弦长为2,则a的值为()A2 B2 C1 D1答案B解析设圆x2y2a2的圆心为O,半径r|a|,将x2y2a2与x2y2ay60联立,可得a2ay60,即公共弦所在的直线方程为a2ay60,原点O到直线a2ay60的距离为,根据勾股定理可得a232,解得a2.7一束光线从圆C的圆心C(1,1)出发,经x轴反射到圆C1:(x2)2(y3)21上的最短路程刚好是圆C的直径,则圆C的方程为()A(x1)2(y1)24 B(x1)2(y1)25C(x1)2(y1)216 D(x1)2(y1)225答案A解析圆C1的圆心C1的坐标为(2,3),半径为r11.点C(1,1)关于x轴的对称点C的坐标为(1,1)因为C在反射线上,所以最短路程为|CC1|r1,即14.故圆C的半径为r42,所以圆C的方程为(x1)2(y1)24,故选A.8圆O1:x2y22x0和圆O2:x2y24y0的位置关系是_答案相交解析由已知得O1(1,0),r11,O2(0,2),r22,|O1O2|r2r11,故两圆相交二、高考小题92016浙江高考已知aR,方程a2x2(a2)y24x8y5a0表示圆,则圆心坐标是_,半径是_答案(2,4)5解析方程a2x2(a2)y24x8y5a0表示圆,则a2a2,故a1或2.当a2时,方程为4x24y24x8y100,即x2y2x2y0,亦即2(y1)2,不成立,故舍去;当a1时,方程为x2y24x8y50,即(x2)2(y4)225,故圆心为(2,4),半径为5.10. 2015湖北高考如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|2.(1)圆C的标准方程为_;(2)圆C在点B处的切线在x轴上的截距为_答案(1)(x1)2(y)22(2)1解析(1)过点C作CMAB于M,连接AC,则|CM|OT|1,|AM|AB|1,所以圆的半径r|AC|,从而圆心C(1,),即圆的标准方程为(x1)2(y)22.(2)令x0,得y1,则B(0,1),所以直线BC的斜率为k1,由直线与圆相切的性质知,圆C在点B处的切线的斜率为1,则圆C在点B处的切线方程为y(1)1(x0),即yx1,令y0,得x1,故所求切线在x轴上的截距为1.112016全国卷设直线yx2a与圆C:x2y22ay20相交于A,B两点,若|AB|2,则圆C的面积为_答案4解析把圆C的方程化为x2(ya)22a2,则圆心为(0,a),半径r.圆心到直线xy2a0的距离d.由r2d22,得a223,解得a22,则r24,所以圆的面积Sr24.122016天津高考已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2xy0的距离为,则圆C的方程为_答案(x2)2y29解析设圆C的方程为(xa)2y2r2(a0),由题意可得 解得所以圆C的方程为(x2)2y29.132016全国卷已知直线l:mxy3m0与圆x2y212交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点若|AB|2,则|CD|_.答案4解析由题意可知直线l过定点(3,),该定点在圆x2y212上,不妨设点A(3,),由于|AB|2,r2,所以圆心到直线AB的距离为d3,又由点到直线的距离公式可得d3,解得m,所以直线l的斜率km,即直线l的倾斜角为30.如图,过点C作CHBD,垂足为H,所以|CH|2,在RtCHD中,HCD30,所以|CD|4.三、模拟小题142017深圳五校联考已知直线l:xmy40,若曲线x2y22x6y10上存在两点P、Q关于直线l对称,则m的值为()A2 B2 C1 D1答案D解析因为曲线x2y22x6y10是圆(x1)2(y3)29,若圆(x1)2(y3)29上存在两点P、Q关于直线l对称,则直线l:xmy40过圆心(1,3),所以13m40,解得m1,故选D.152016湖南四地联考若圆C:x2y22x4y30关于直线2axby60对称,过点(a,b)作圆的切线,则切线长的最小值是()A2 B3 C4 D6答案C解析圆C的标准方程为(x1)2(y2)22,所以圆心为点(1,2),半径为.因为圆C关于直线2axby60对称,所以圆心C在直线2axby60上,所以2a2b60,即ba3,点(a,b)到圆心的距离d.所以当a2时,d取最小值3,此时切线长最小,为4,所以选C.162016福建福州八中六模已知圆O:x2y24上到直线l:xya的距离等于1的点至少有2个,则a的取值范围为()A(3,3)B(,3)(3,)C(2,2)D3,3答案A解析由圆的方程可知圆心为O(0,0),半径为2,因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离dr121,即d3,解得a(3,3),故选A.172016湖南长郡中学月考两圆x2y22axa240 和x2y24by14b20恰有三条公切线,若aR 且ab0,则的最小值为()A1 B3 C. D.答案A解析由题意知两圆的标准方程为(xa)2y24和x2(y2b)21,圆心分别为(a,0)和(0,2b),半径分别为2和1,因为两圆恰有三条公切线,所以两圆外切,故有3,即a24b29,所以(144)1.当且仅当,即|a|b|时取等号,故选A.一、高考大题12015全国卷已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2(y3)21交于M,N两点(1)求k的取值范围;(2)若12,其中O为坐标原点,求|MN|.解(1)由题设,可知直线l的方程为ykx1.因为直线l与圆C交于两点,所以1.解得k0(*),x1x2,所以x0,代入直线l的方程,得y0.因为xy3x0,所以2y.由(*)解得t2,又t20,所以x03.所以线段AB的中点M的轨迹C的方程为2y2.(3)由(2)知,曲线C是在区间上的一段圆弧如图,D,E,F(3,0),直线L过定点G(4,0)联立直线L的方程与曲线C的方程,消去y整理得(1k2)x2(38k2)x16k20.令判别式0,解得k,由求根公式解得交点的横坐标为xH,I,由图可知:要使直线L与曲线C只有一个交点,则kkDG,kEGkGH,kGI,kDG,kEG,即k.二、模拟大题32016天津南开模拟在平面直角坐标系xOy中,圆C:x2y24x2ym0与直线xy20相切(1)求圆C的方程;(2)若圆C上有两点M,N关于直线x2y0对称,且|MN|2,求直线MN的方程解(1)将圆C:x2y24x2ym0化为(x2)2(y1)25m,圆C:x2y24x2ym0与直线xy20相切,圆心(2,1)到直线xy20的距离d2r,圆C的方程为(x2)2(y1)24.(2)若圆C上有两点M,N关于直线x2y0对称,则可设直线MN的方程为2xyc0,|MN|2,半径r2,圆心(2,1)到直线MN的距离为1,即1,c5,直线MN的方程为2xy50.42016河南中原名校联考已知圆C的方程为x2(y4)21,直线l的方程为2xy0,点P在直线l上,过点P作圆C的切线PA,PB,切点为A,B.(1)若APB60,求点P的坐标;(2)求证:经过A,P,C(其中点C为圆C的圆心)三点的圆必经过定点,并求出所有定点的坐标解(1)由条件可得圆C的圆心坐标为(0,4),PC2,设P(a,2a),则2,解得a2或a,所以点P的坐标为(2,4)或.(2)证明:设P(a,2a),过点A,P,C的圆即是以PC为直径的圆,其方程为x(xa)(y4)(y2a)0,整理得x2y2ax4y2ay8a0,即(x2y24y)a(x2y8)0.由得或该圆必经过定点(0,4)和.52017东城模拟已知圆C:x2y22x4y30.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|PO|,求使|PM|取得最小值时点P的坐标解(1)将圆C配方,得(x1)2(y2)22.当切线在两坐标轴上的截距为零时,设切线方程为ykx,由,得k2,切线方程为y(2)x.当切线在两坐标轴上的截距不为零时,设切线方程为xya0(a0),由,得|a1|2,即a1或a3.切线方程为xy10或xy30.综上,圆的切线方程为y(2)x或y(2)x或xy10或xy30.(2)由|PO|PM|,得xy(x11)2(y12)22,整理得2x14y130,即点P在直线l:2x4y30上当|PM|取最小值时,|PO|取最小值,此时直线POl,直线PO的方程为2xy0.解方程组得点P的坐标为.62017常州模拟如图,已知圆心坐标为M(,1)的圆M与x轴及直线yx均相切,切点分别为A,B,另一圆N与圆M相切,且与x轴及直线yx均相切,切点分别为C,D.(1)求圆M与圆N的方程;(2)过点B作MN的平行线l,求直线l被圆N截得的弦长解(1)由于圆M与BOA的两边相切,故M到OA,OB的距离相等,则点M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轻松的年会个人主持稿5篇
- 医疗废物无害化处理项目申请报告可行性实施报告
- 电子废弃物处理机械设备制造项目可行性研究报告
- 生物体外诊断试剂技改项目可行性研究报告
- 陕西前期物业服务合同备案规定法条
- 商铺电力安装合同协议书
- 销售部年度工作计划5篇范文
- 知识产权价值评估手册
- 员工宿舍物品存放规则
- 大型输变电站预应力施工合同
- 困难职工帮扶救助申请表
- 机械设计课程设计说明书 11机电本 刘伟华
- 问卷1:匹兹堡睡眠质量指数量表(PSQI)
- 大黄具有抗菌作用
- 高速铁路桥涵工程桥上救援疏散通道施工方案
- 《企业水平衡测试通则》
- 《演讲的肢体语言》PPT课件
- 研究一亿有多大ppt课件
- 企业经营状况调查问卷
- -中医养生健康讲座活动方案
- 部编版三年级语文上册教材解读及教学建议(课堂PPT)
评论
0/150
提交评论