浙江专版高考数学第2章函数导数及其应用第9节函数模型及其应用课时分层训练.docx_第1页
浙江专版高考数学第2章函数导数及其应用第9节函数模型及其应用课时分层训练.docx_第2页
浙江专版高考数学第2章函数导数及其应用第9节函数模型及其应用课时分层训练.docx_第3页
浙江专版高考数学第2章函数导数及其应用第9节函数模型及其应用课时分层训练.docx_第4页
浙江专版高考数学第2章函数导数及其应用第9节函数模型及其应用课时分层训练.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时分层训练(十一)函数模型及其应用A组基础达标(建议用时:30分钟)一、选择题1在某个物理试验中,测量得变量x和变量y的几组数据,如下表:x0.500.992.013.98y0.990.010.982.00则对x,y最适合的拟合函数是()Ay2xByx21Cy2x2Dylog2 xD根据x0.50,y0.99,代入计算,可以排除A;根据x2.01,y0.98,代入计算,可以排除B、C;将各数据代入函数ylog2 x,可知满足题意2某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是() 【导学号:51062068】A118元B105元C106元D108元D设进货价为a元,由题意知132(110%)a10%a,解得a108,故选D.3一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示某天0点到6点,该水池的蓄水量如图292丙所示图292给出以下3个论断:0点到3点只进水不出水;3点到4点不进水只出水;4点到6点不进水不出水,则一定正确的是()ABCDA由甲、乙两图知,进水速度是出水速度的,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是.4将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为()A85元B90元C95元D100元C设每个售价定为x元,则利润y(x80)400(x90)2020(x95)2225,当x95时,y最大5(2017四川德阳一诊)将甲桶中的a L水缓慢注入空桶乙中,t min后甲桶中剩余的水量符合指数衰减曲线yaent.假设过5 min后甲桶和乙桶的水量相等,若再过m min甲桶中的水只有 L,则m的值为()A5B8 C9D10A5 min后甲桶和乙桶的水量相等,函数yf(t)aent满足f(5)ae5na,可得nln,f(t)a,因此,当k min后甲桶中的水只有 L时,f(k)aa,即,k10,由题可知mk55,故选A.二、填空题6(2017浙江高考冲刺卷(一)对于实数x,定义符号x表示不超过x的最大整数,例:1.21,1.22.则当0x2时,满足x22x的x的取值范围是_,2当0x2时,0x24,02x4.x22x等价于或或或或解得0x或x或x2.7某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤_次才能达到市场要求(已知lg 20.301 0,lg 30.477 1)8设过滤n次才能达到市场要求,则2%n0.1%,即n,所以nlg1lg 2,所以n7.39,所以n8.8某食品的保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系yekxb(e2.718为自然对数的底数,k,b为常数)若该食品在0 的保鲜时间是192小时,在22 的保鲜时间是48小时,则该食品在33 的保鲜时间是_小时. 【导学号:51062069】24由已知条件,得192eb,bln 192.又48e22kbe22kln 192192e22k192(e11k)2,e11k.设该食品在33 的保鲜时间是t小时,则te33kln 192192e33k192(e11k)3192324.三、解答题9为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)(0x10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值解(1)由已知条件得C(0)8,则k40,2分因此f(x)6x20C(x)6x(0x10).6分(2)f(x)6x101021070(万元),9分当且仅当6x10,即x5时等号成立,13分所以当隔热层厚度为5 cm时,总费用f(x)达到最小值,最小值为70万元.15分10国庆期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止每团乘飞机,旅行社需付给航空公司包机费15 000元(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润? 【导学号:51062070】解(1)设旅行团人数为x,由题得00;当x1时,(x22ax4a2)2|x1|(x2)(x2a).4分所以使得等式F(x)x22ax4a2成立的x的取值范围为2,2a.7分(2)设函数f(x)2|x1|,g(x)x22ax4a2,则f(x)minf(1)0,g(x)ming(a)a24a2,所以由F(x)的定义知m(a)minf(1),g(a),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论