




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高邮市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.C. D.2 函数的零点所在区间为( )A(3,4)B(2,3)C(1,2)D(0,1)3 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离4 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 5 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A1BC2D46 已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD7 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270由算得附表:参照附表,则下列结论正确的是( )有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;采用系统抽样方法比采用简单随机抽样方法更好;采用分层抽样方法比采用简单随机抽样方法更好;A B C D8 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x19 将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则的一个可能值为( )ABCD10如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是( )A8cm2B cm2C12 cm2D cm211某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m312某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D二、填空题13已知x是400和1600的等差中项,则x=14已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 15已知数列an中,a1=1,an+1=an+2n,则数列的通项an=16已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位:)17若x,y满足线性约束条件,则z=2x+4y的最大值为18复数z=(i虚数单位)在复平面上对应的点到原点的距离为三、解答题19已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围20已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围 21已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围22已知集合A=x|a1x2a+1,B=x|0x1(1)若a=,求AB(2)若AB=,求实数a的取值范围 23已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿24 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 高邮市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P.2 【答案】B【解析】解:函数的定义域为(0,+),易知函数在(0,+)上单调递增,f(2)=log3210,f(3)=log330,函数f(x)的零点一定在区间(2,3),故选:B【点评】本题考查函数的单调性,考查零点存在定理,属于基础题3 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力4 【答案】【解析】考点:直线方程5 【答案】B【解析】解:设圆柱的高为h,则V圆柱=12h=h,V球=,h=故选:B6 【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。7 【答案】D 【解析】解析:本题考查独立性检验与统计抽样调查方法由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,正确,选D8 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B9 【答案】D【解析】解:将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+)的图象,=k+,即 =k+,kZ,则的一个可能值为,故选:D10【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=22+422=12cm2,故选:C【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键11【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题12【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.二、填空题13【答案】1000 【解析】解:x是400和1600的等差中项,x=1000故答案为:100014【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键15【答案】2n1 【解析】解:a1=1,an+1=an+2n,a2a1=2,a3a2=22,anan1=2n1,相加得:ana1=2+22+23+2+2n1,an=2n1,故答案为:2n1,16【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:17【答案】38 【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=23+48=6+32=32,故答案为:3818【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力三、解答题19【答案】 【解析】解:(1)f(x)=log3(1+x)log3(1x)为奇函数理由:1+x0且1x0,得定义域为(1,1),(2分)又f(x)=log3(1x)log3(1+x)=f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又1x1,k0,(6分)由f(x)g(x)得log3log3,即,(8分)即k21x2,(9分)x,时,1x2最小值为,(10分)则k2,(11分)又k0,则k,即k的取值范围是(,.【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题20【答案】 【解析】解:(I)椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为点在椭圆G上,又离心率为,解得椭圆G的方程为(II)由(I)可知,椭圆G的方程为点F的坐标为(1,0)设点P的坐标为(x0,y0)(x01,x00),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得又由已知,得,解得或1x00设直线OP的斜率为m,则直线OP的方程为y=mx由方程组消去y0,并整理得由1x00,得m2,x00,y00,m0,m(,),由x01,得,x00,y00,得m0,m直线OP(O是坐标原点)的斜率的取值范围是(,)(,)【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用21【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可得AC即,解得3m122【答案】【解析】解:(1)当a=时,A=x|,B=x|0x1AB=x|0x1(2)若AB=当A=时,有a12a+1a2当A时,有2a或a2综上可得,或a2【点评】本题主要考查了集合交集的求解,解题时要注意由AB=时,要考虑集合A=的情况,体现了分类讨论思想的应用23【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线CD的方程为,得x1=1,直线CD的方程为设l:y+1=k(x1),与方程联立,求得xQ=(9分)设A(xA,yA),B(xB,yB)联立y+1=k(x1)与x2=4y,得x24kx+4k+4=0,由根与系数的关系,得xA+xB=4kxAxB=4k+4(10分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省遂宁市二中2025年高三数学试题二诊模拟考试试题含解析
- 新疆昌吉州阜康二中学2025届初三4月模拟训练化学试题含解析
- 陕西省西安市未央区2025年初三“零诊”考试生物试题含解析
- 云南国土资源职业学院《化工过程自动控制与仪表》2023-2024学年第二学期期末试卷
- 江苏省泰州市凤凰初级中学2024-2025学年初三质量监测(一)生物试题试卷含解析
- 天津医学高等专科学校《定量遥感》2023-2024学年第二学期期末试卷
- 绿化种植培训方案
- 商务礼仪电梯培训
- 2025年个人SUV车库买卖合同
- 文明用语培训课件
- 出租车司机岗前教育培训
- 广东省梅州市五华县2023-2024学年二年级下学期数学期中试卷(含答案)
- 肝癌科普预防
- 中学2021年秋季开学疫情防控工作方案及要求4篇
- 《经典常谈》每章习题及答案
- 体格检查-腹部检查(临床诊断课件)
- 桡骨远端骨折中医护理方案
- 2025年叉车司机操作证考试题库
- DB11-T 1448-2017 城市轨道交通工程资料管理规程
- 【MOOC】《学术交流英语》(东南大学)章节中国大学慕课答案
- 2025年鼎和财产保险股份有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论