2018_2019学年高中数学第一章解三角形专题1.1.1正弦定理试题新人教A版.docx_第1页
2018_2019学年高中数学第一章解三角形专题1.1.1正弦定理试题新人教A版.docx_第2页
2018_2019学年高中数学第一章解三角形专题1.1.1正弦定理试题新人教A版.docx_第3页
2018_2019学年高中数学第一章解三角形专题1.1.1正弦定理试题新人教A版.docx_第4页
2018_2019学年高中数学第一章解三角形专题1.1.1正弦定理试题新人教A版.docx_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1.1 正弦定理1正弦定理在中,若角A,B,C对应的三边分别是a,b,c,则各边和它所对角的正弦的比相等,即_正弦定理对任意三角形都成立2解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的_已知三角形的几个元素求其他元素的过程叫做_K知识参考答案:12元素 解三角形K重点正弦定理的变形和推广、正弦定理在解三角形中的应用K难点三角形解的个数的探究、三角形形状的判断K易错解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)(2)(3)(4)正弦定理的推广:,其中为外接圆的半径(1)已知ABC中,则=_;(2)已知ABC中,A,则=_【答案】(1);(2)2【解析】(1)根据正弦定理的变形,可得(2)方法1:设,则有 从而,又,所以=2方法2:根据正弦定理的变形,可得【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果在中,求证:【答案】证明见解析【解析】设外接圆的半径为R,则 于是所以【解题技巧】的两种变形的应用:(1)(边化角);(2)(角化边)正弦定理在解三角形中的应用、三角形解的个数的探究1正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角2三角形解的个数的探究(以已知和解三角形为例)(1)从代数角度来看若,则满足条件的三角形的个数为0,即无解;若,则满足条件的三角形的个数为1;若,则满足条件的三角形的个数为1或2注:对于(3),由可知B可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180”等进行讨论(2)从几何角度来看当A为锐角时:一解 一解两解无解当A为钝角或直角时:一解 一解 无解 无解(1)已知在中,则_,_,_;(2)已知在中,则_,_,_;(3)已知在中,求和【答案】(1),;(2),;(3)见解析【解析】(1),由得由得(2),为锐角,(3),或,当时,当时,或【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可以计算出三角形的另一角,由正弦定理可计算出三角形的另两边(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边三角形形状的判断判断三角形形状的常用方法边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状一般来说,这种方法能够判断的三角形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形在中,已知,且,则是A等腰三角形B直角三角形C等腰直角三角形D等腰或直角三角形【答案】B【解析】设的外接圆半径为,由正弦定理的推广,得,代入,可得,即因为,所以,即由正弦定理的推广可得,所以,由及可得,所以是直角三角形故选B【名师点睛】注意到a,b,c在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角通过角的特征或者关系来判断三角形的形状忽略角的取值范围而出错在中,若,求的取值范围【错解】由正弦定理,可得,由,可得故的取值范围为【错因分析】错解中没有考虑角的取值范围,误认为角的取值范围为【正解】由正弦定理可得,即,故的取值范围为【名师点睛】解三角形时要注意三角形的内角为正角且必须满足三角形内角和定理,这是解题中的隐含条件,应特别注意忽略对角的讨论而出错已知在中, 求角和边【错解】由正弦定理可得 ,【错因分析】错解中由正弦定理求出角A的正弦值后误认为角A是锐角,从而导致错误【正解】由正弦定理得 或当时, 当时,综上,或【名师点睛】在中,已知两边和其中一边的对角解三角形时,可先用正弦定理求出另一边的对角,此时解的个数可能不确定,应注意讨论,避免漏解导致错误1在中,角,的对边分别为,则A BCD2在中,角,的对边分别为,若,则 A或BCD3在中,若A60,B45,BC,则ACABCD4在中,角A,B,C的对边分别为a,b,c,已知A:B:C1:2:3,则a:b:cA1:2:3B1:2:C1:2D2:15在中,角A,B,C的对边分别为a,b,c,则ABCD6在中,角A,B,C的对边分别为a,b,c,若,则的形状为A锐角三角形B直角三角形C钝角三角形D不能确定7在中,角A,B,C的对边分别为a,b,c,则此三角形解的个数为ABCD不能确定8已知中,角A,B,C的对边分别为a,b,c,且cosA:cosBb:a,则是A等腰三角形B直角三角形C等腰直角三角形D等腰或直角三角形9在中,角A,B,C的对边分别为a,b,c,若,则_10在中,角A,C的对边分别为a,c,其中,则角_11在中,若B30,AB2,AC2,则的周长为_12的内角A,B,C的对边分别为a,b,c,己知=90,+=,求13在中,角A,B,C的对边分别为a,b,c,若ab,A2B,则cosB=ABCD14在中,角A,B,C的对边分别为a,b,c,已知,则ABCD15在中,角A,B,C的对边分别为a,b,c,已知,则角B等于ABC或D以上都不正确16在中,角A,B,C的对边为a,b,c,若,则是A等腰三角形B直角三角形C等腰直角三角形D等腰或直角三角形17在中,角A,B,C的对边分别为a,b,c,若,则是A有一内角是30的三角形B等边三角形C等腰直角三角形D有一内角是30的等腰三角形18在中,已知,则边长A或BC2D19在中,已知,则_20如图所示,在一个坡度一定的山坡的顶上有一高度为25的建筑物为了测量该山坡相对于水平地面的坡角,在山坡的处测得,沿山坡前进50到达处,又测得根据以上数据计算可得_21如图,在中,点在边上,(1)求的值;(2)若,求的长22(2017山东理)在中,角A,B,C的对边分别为,若为锐角三角形,且满足,则下列等式成立的是ABCD23(2017新课标全国文)ABC的内角A,B,C的对边分别为a,b,c已知,a=2,c=,则C=ABCD24(2017新课标全国文)的内角A,B,C的对边分别为a,b,c,若,则_25(2017新课标全国文)的内角A,B,C的对边分别为a,b,c已知C=60,b=,c=3,则A=_26(2018北京理)在中,(1)求;(2)求边上的高1【答案】D【解析】,由得故选D2【答案】B【解析】在中,由得,由于,所以,所以,故选B3【答案】B【解析】由正弦定理得,所以AC故选B4【答案】C【解析】因为在中,ABC,且A:B:C1:2:3,所以A,B=,C=,由正弦定理的变形,得a:b:csinA:sinB:sinC1:2故选C6【答案】B【解析】由已知可得,三角形为直角三角形故选B7【答案】C【解析】由正弦定理可得,因为,所以,所以角可能是锐角,也可能是钝角,所以此三角形有两解,故选C8【答案】D【解析】由正弦定理可得,即sinAcosAsinBcosB,所以sin2Asin2B,即2A2B或2A2B,即AB或AB,故是等腰或直角三角形故选D9【答案】【解析】,10【答案】【解析】由正弦定理可得,即,所以或,又,所以 12【答案】【解析】由正弦定理可得,又由于,故,即因为,所以,即13【答案】B【解析】由正弦定理,得,所以ab可化为又A2B,所以,所以cosB故选B14【答案】D【解析】在中,由正弦定理可得,又,所以,故选D15【答案】A【解析】在中,又,故选A16【答案】D【解析】由正弦定理和已知条件可得,所以 即,所以或,即或故是等腰三角形或直角三角形故选D18【答案】A【解析】由正弦定理可得,在中,或当时,;当时,此时综上,可得或故选A19【答案】或【解析】由正弦定理得,得,由,得,所以或,从而或21【答案】(1);(2)【解析】(1)因为,所以又,所以,所以(2)在中,由,可得22【答案】A【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论