




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲 导数与函数的单调性、极值、最值问题,高考定位 高考对本内容的考查主要有:(1)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式,一般不单独设置试题,是解决导数应用的第一步;(2)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.,真 题 感 悟,考 点 整 合,1.导数与函数的单调性,(1)函数单调性的判定方法:设函数yf(x)在某个区间内可导,如果f(x)0,则yf(x)在该区间为增函数;如果f(x)0,则yf(x)在该区间为减函数. (2)函数单调性问题包括:求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;利用单调性证明不等式或比较大小,常用构造函数法.,2.极值的判别方法,当函数f(x)在点x0处连续时,如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是点x0两侧导数异号,而不是f(x)0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值的大小关系是不确定的,即有可能极大值比极小值小.,3.闭区间上函数的最值,在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.,探究提高 讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,常需依据以下标准分类讨论:(1)二次项系数为0、为正、为负,目的是讨论开口方向;(2)判别式的正负,目的是讨论对应二次方程是否有解;(3)讨论两根差的正负,目的是比较根的大小;(4)讨论两根与定义域的关系,目的是根是否在定义域内.另外,需优先判断能否利用因式分解法求出根.,微题型2 已知函数的单调区间求参数范围 【例12】 已知aR,函数f(x)(x2ax)ex(xR,e为自然对数的底数). (1)当a2时,求函数f(x)的单调递增区间; (2)若函数f(x)在(1,1)上单调递增,求a的取值范围; (3)函数f(x)是否为R上的单调函数?若是,求出a的取值范围?若不是,请说明理由.,(2)因为函数f(x)在(1,1)上单调递增,所以f(x)0对x(1,1)都成立.因为f(x)(2xa)ex(x2ax)exx2(a2)xaex,所以x2(a2)xaex0对x(1,1)都成立.,(3)若函数f(x)在R上单调递减,则f(x)0对xR都成立,即x2(a2)xaex0对xR都成立.因为ex0,所以x2(a2)xa0对xR都成立.所以(a2)24a0,即a240,这是不可能的.故函数f(x)不可能在R上单调递减.,若函数f(x)在R上单调递增,则f(x)0对xR都成立,即x2(a2)xaex0对xR都成立,因为ex0,所以x2(a2)xa0对xR都成立.而(a2)24aa240,故函数f(x)不可能在R上单调递增. 综上,可知函数f(x)不可能是R上的单调函数.,探究提高 (1)已知函数的单调性,求参数的取值范围,应用条件f(x)0(或f(x)0),x(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f(x)不恒等于0的参数的范围. (2)可导函数f(x)在某个区间D内单调递增(或递减),转化为恒成立问题时,常忽视等号这一条件,导致与正确的解法擦肩而过,注意,这里“”一定不能省略.,解 (1)当a0时,f(x)xxln x,f(x)ln x, 所以f(e)0,f(e)1. 所以曲线yf(x)在点(e,f(e)处的切线方程为yxe, 即xye0.,热点二 利用导数研究函数的极值 【例2】 (2016苏、锡、常、镇调研)设函数f(x)x2exk(x2ln x)(k为实常数,e2.718 28是自然对数的底数). (1)当k1时,求函数f(x)的最小值; (2)若函数f(x)在(0,4)内存在三个极值点,求k的取值范围.,探究提高 极值点的个数,一般是使f(x)0方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助导函数的性质及图象研究.,【训练2】 设函数f(x)ax32x2xc. (1)当a1,且函数图象过 (0,1)时,求函数的极小值; (2)若f(x)在R上无极值点,求a的取值范围.,热点三 利用导数研究函数的最值 【例3】 (2015南京、盐城模拟)设函数f(x)x3kx2x(kR). (1)当k1时,求函数f(x)的单调区间; (2)当k0时,求函数f(x)在k,k上的最小值m和最大值M.,解 f(x)3x22kx1. (1)当k1时,f(x)3x22x1,41280, 所以f(x)0恒成立,故f(x)在R上单调递增. 故函数f(x)的单调增区间为(,),无单调减区间.,(2)当k0时,对xk,k,都有 f(x)f(k)x3kx2xk3k3k(x21)(xk)0, 故f(x)f(k); f(x)f(k)x3kx2xk3k3k(xk)(x22kx2k21)(xk)(xk)2k210, 故f(x)f(k).而f(k)k0,f(k)2k3k0, 所以f(x)maxf(k)2k3k,f(x)minf(k)k.,探究提高 含参数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.,1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“”连接,而只能用逗号或“和”字隔开. 2.可导函数在闭区间a,b上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.,3.可导函数极值的理解,(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值; (2)对于可导函数f(x),“f(x)在xx0处的导数f(x0)0”是“f(x)在xx0处取得极值”的必要不充分条件; (3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.,4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省大连明星小学2025届三下数学期末统考试题含解析
- 吉林省镇赉县镇赉镇中学2024-2025学年下学期初三期中数学试题含解析
- 内江职业技术学院《管理沟通与写作》2023-2024学年第二学期期末试卷
- 湛江市年模拟历史试题(二)
- 矿热炉安全培训
- 企业营销培训
- 2025科技公司股权转让协议 科技公司股权转让合同样本
- 2025律师事务所合同律师的聘用合同
- 2025年国内购销合同协议范本
- 2025国内外合同管理资料
- 2025年济源职业技术学院单招职业技能测试题库附答案
- 承包餐馆协议书模板
- 《浙江省中药饮片炮制规范》 2015年版
- 危险化学品事故应急预案
- 第三方房屋抵押担保合同
- 2025年山东建筑安全员《B证》考试题库及答案
- 2025届上海市黄浦区高三下学期二模政治试题(原卷版+解析版)
- 校园零星维修协议书
- 广东省清远市清新区2025年中考一模语文试题(含答案)
- “燕园元培杯”2023-2024学年全国中学生地球科学奥林匹克竞赛决赛试题详解
- 消防队伍廉洁警示教育
评论
0/150
提交评论