



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Title: Surface area to Volume activityDescription: This activity demonstrates the relationship between sphere surface area and volume using ping pong balls, tennis balls, containers, calipers, and data tables made in Microsoft Excel. The effects of the surface area to volume ratio on filling space and reactivity are also discussed.Audience: Grades 7-12, chemistry or physical sciences classBackground information: Formulas for sphere surface area and volume, familiarity with Microsoft Excel, unit conversions, and general understanding of reaction dynamics of surface-solvent chemistryConcepts Taught: As sphere radius decreases, the surface area to volume ratio increases. Because chemical reactions between a solid and a liquid occur only at the surface of the solid, reactivity of materials increases as particle size decreases.Vocabulary: Surface area is a measure of how much exposed area a solid object has, measured in squared units. Volume is the quantity of 3-dimensional space enclosed by a shape.Chemical reactivity of a substance in a chemical reaction depends on my factors, including particle size.Materials:50 ping pong balls15 tennis ballsCalipersPlastic containers, lidsMicrosoft ExcelConclusion: This activity reinforces concepts of unit conversion, the ratio of sphere surface area to volume, chemical reactivity of a solid in a liquid, particle space-filling, and data calculation and plotting using computer spreadsheet software. Sphere Surface Area and Volume Exercise - October 25, 2011It may come as a surprise to find that a spheres surface area-to-volume ratio does not remain constant as the size of the sphere changes. Today, we will investigate this trend as sphere radius is varied using two different approaches: 1) Direct measurement and comparison of different size spheres.2) Excel plots of parameters with varying sphere radius.Here are the formulas for sphere surface area and volume, where r is radius: S.A.sphere=4r2 Vsphere=43r3SA/V Activity Part 1:Step 1: 1. Record the volume of the plastic container in cm3.Volume:_cm3Step 2: 1. Fill the container with as many tennis balls as you can without any of the tennis balls sticking out of the top of the box.2. Measure the diameter of one of the tennis balls.3. Calculate the surface area and volume of the tennis ball and multiply by the total number of tennis balls in the container.4. Calculate the SA:V by dividing the total surface area by the total volume.5. Calculate the “wasted” volume by subtracting the total volume from the volume of the plastic container that was calculated in step 1.Diameter:_cmSurface Area:_cm2Volume:_cm3# of Tennis Balls:_Total Surface Area:_cm2Total Volume:_cm3SA:V_Wasted Volume:_cm3Step 3: Repeat the procedure in step 2 using ping pong balls instead of tennis balls. Record all calculations and measurements below:Diameter:_cmSurface Area:_cm2Volume:_cm3# of Ping Pong Balls:_Total Surface Area:_cm2Total Volume:_cm3SA/V_Wasted Volume:_cm3SA/V Activity Part 2:1.1) Using the equations for sphere volume and surface area, fill in the table below. Plot sphere volume vs. radius and sphere surface area vs. radius. Plot both data sets on one graph for easy comparison. 1.1)Sphere Radius (m)Surface Area (m2)Volume (m3)1.2)SA/Vol. (m-1)1.000E-091.000E-081.000E-071.000E-061.000E-051.000E-041.000E-031.000E-021.000E-011.000E+001.000E+011.000E+021.000E+031.000E+041.000E+051.000E+061.000E+071.000E+081.000E+091.2) Calculate and record the surface area to volume ratio (SA/V) for each of the data points. Plot SA/V vs. radius.1.3) Explain the trends you observe in the surface area and volume with respect to sphere size.2) What radius (m) of sphere has a surface area to volume ratio equal to 1? (HINT: try setting the two equations equal to one another)3) A colloidal solution contains 5.00*1013 gold nanoparticles per mL. The nanoparticles have a diameter of 50.0 nm.a) What is th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理过程中的反馈与改进策略试题及答案
- 宁夏中卫市本年度(2025)小学一年级数学统编版专题练习((上下)学期)试卷及答案
- 小学课题申报书范例
- 项目管理学术评价试题及答案
- 注会考生个性的试题与答案
- 2025年证券从业资格证考试关键考点试题及答案
- 2025年证券从业资格考试的练习题试题及答案
- 四川省泸州市龙马潭区2025年中考语文一模试卷(含答案)
- 准确识别项目管理考试的题型和难度试题及答案
- 关于课题申报书字号
- 动态心电图及动态血压课件
- 小学数学《两位数乘两位数》作业设计案例
- 2024年基金应知应会考试试题及答案
- 小升初数学衔接讲座
- HR用工风险课件
- 第一类医疗技术目录(一甲医院)
- 护理给药制度课件
- 辊涂型卷烟接嘴胶动态流变性能对其上机适用性的影响
- 《高一历史百日维新》课件
- 搅拌站安全生产检查与隐患排查表格清单
- DB36T+744-2023废旧轮胎橡胶沥青路面施工技术规范
评论
0/150
提交评论