bioinformaticspipelinesforanalyzingisrcedatasetstoanswerkeysystemsbiologyquestions课件_第1页
bioinformaticspipelinesforanalyzingisrcedatasetstoanswerkeysystemsbiologyquestions课件_第2页
bioinformaticspipelinesforanalyzingisrcedatasetstoanswerkeysystemsbiologyquestions课件_第3页
bioinformaticspipelinesforanalyzingisrcedatasetstoanswerkeysystemsbiologyquestions课件_第4页
bioinformaticspipelinesforanalyzingisrcedatasetstoanswerkeysystemsbiologyquestions课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Bioinformatics Pipelines for Analyzing ISRCE Datasets to Answer Key Systems Biology Questions,Yuriy Gusev Clinical Research Informatics Georgetown/Lombardi,Bioinformatics Analysis Pipeline,Raw Data Sets: public or local Gene Expression, DNA copy number, microRNA expression ,Data Proccessing: Uniform Signal Extraction, Normalization, Quality Control,Group Comparison Based on Clinical Attributes: Statistical Tests, Cluster Analysis, Principal Components Analysis, Classification (PUG-SVM),Advanced Analysis: Functional profiling; Pathway Analysis, Network Analysis, Machine Learning /Classification,Biological Interpretation,Experimental Or In Silico Validation,Novel Hypothesis,Study/Data Inventory,Breast Cancer Studies Total Cases: 1538+,Case Study: Loi et al.,Additional Studies: Assessment in Progress (Rebecca Riggins),Case Study (Loi et al.): Differential Gene Expression Clinical Outcome: five year DMFS,Data Analysis Details: Two options for processing: Original Affymetrix Probes Sets: Multiple Probe Sets per gene Custom Chip Definition Files (CDFs): Single Probe Set per gene (Bioconductor),Quality Control : Checking for outliers,Group Comparison: DMFS5years T-test with multiple testing correction: P0.05 controlling False Discovery Rate FDR5% Results: 252 differentially expressed genes (DEGs): 129Up; 123Down,Systems Biology Analysis: Functional profiling of DEGs - Gene Set Enrichment Analysis (GSEA algorithm MIT): 10 Pathways Rich collection of functionally related sets of genes (curated); Pathways from multiple open sources (KEGG, Biocarta, etc) - Gene Ontology Analysis (Pathway Studio): Top 20 Biological processes Pathway Enrichment Analysis Pathway Studio (4); Ingenuity (10) Regulatory Networks Enrichment: Transcription Factors, microRNA,Gene Set Enrichment Analysis (GSEA),Gene Set Enrichment Analysis (GSEA) Matrix View,Estrogen Signaling in Breast Cancer,In Progress,Tabular Format,Interactive Pathway,Pathway Analysis II : Pathway Studio (Ariadne),Significantly Enriched Pathways,Functional Profiling of Differentially Expressed Genes: Gene Ontology Enrichment Analysis,Top 3 Biological Processes,Gene Ontology Enrichment Analysis Next 10 categories: All related to Mechanisms of Mitosis,Mitosis Regulation Pathways: Mitotic Role of Polo-Like Kinase,STRING: Known Protein-Protein Interactions Network Based on 252 DEGs from Loi data analysis,Regulation of Mitosis,Regulatory Networks Enrichment Analysis I: Transcription Factors Expression Targets Enrichment with DEGs from Loi study (p0.05),Top 10 TFs,Regulatory Networks Enrichment Analysis II: microRNA known targets microRNA-regulated networks enriched with DEGs/Loi Study (p0.05),All enriched miRNA networks,Disease Ontology gene associations (DOLite),Summary,Bioinformatics Analysis Pipeline: uniform processing (R, Bioconductor) and analysis using caBIG tools and methods: Bioconductor, GSEA, Growing collection of uniformly processed public datasets Case Study: Loi et al, 5year DMFS - Identified 252 differentially expressed genes Gene Set and Pathway Analysis identified small subset of specific pathways related to cell cycle and mitosis regulation, Estrogen Receptor signaling and several others Functional Profiling using Gene Ontology Enrichment and Regulatory Sub-networks Enrichment analysis allows to narrow down specific biological processes and molecular regulators (Transcription Factors and microRNAs) that are most likely factors affecting expression of identified DEGs and could be candidates for follow-up experiments In Progress : classification algorithm (PUG-SVM) and advanced network ana

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论