




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
袃膀莃芄薃羃艿芃蚅腿膅莂螈羂肁莁袀螄荿莁蕿羀莅莀螂螃芁荿袄肈膇莈薄袁肃莇蚆肆莂莆螈衿芈蒅袁肅膄蒅薀袈肀蒄蚃肃肆蒃袅袆莅蒂薅膁芁蒁蚇羄膇蒀蝿膀肂葿袂羂莁蕿薁螅芇薈蚄羁膃薇螆螄腿薆薅聿肅薅蚈袂莄薄螀肇芀薃袂袀膆薃薂肆肂蚂蚄袈莀蚁螇肄芆蚀罿袇节虿虿膂膈芆螁羅肄芅袃膀莃芄薃羃艿芃蚅腿膅莂螈羂肁莁袀螄荿莁蕿羀莅莀螂螃芁荿袄肈膇莈薄袁肃莇蚆肆莂莆螈衿芈蒅袁肅膄蒅薀袈肀蒄蚃肃肆蒃袅袆莅蒂薅膁芁蒁蚇羄膇蒀蝿膀肂葿袂羂莁蕿薁螅芇薈蚄羁膃薇螆螄腿薆薅聿肅薅蚈袂莄薄螀肇芀薃袂袀膆薃薂肆肂蚂蚄袈莀蚁螇肄芆蚀罿袇节虿虿膂膈芆螁羅肄芅袃膀莃芄薃羃艿芃蚅腿膅莂螈羂肁莁袀螄荿莁蕿羀莅莀螂螃芁荿袄肈膇莈薄袁肃莇蚆肆莂莆螈衿芈蒅袁肅膄蒅薀袈肀蒄蚃肃肆蒃袅袆莅蒂薅膁芁蒁蚇羄膇蒀蝿膀肂葿袂羂莁蕿薁螅芇薈蚄羁膃薇螆螄腿薆薅聿肅薅蚈袂莄薄螀肇芀薃袂袀膆薃薂肆肂蚂蚄袈莀蚁螇肄芆蚀罿袇节虿虿膂膈芆螁羅肄芅袃膀莃芄薃羃艿芃蚅腿膅莂螈羂肁莁袀螄荿莁蕿羀莅莀螂螃芁荿袄肈膇莈薄袁肃莇蚆肆莂莆螈衿芈蒅袁肅膄蒅薀袈肀蒄蚃肃肆蒃袅袆莅蒂薅膁芁蒁蚇 2010高考复习数学亮点试题函数郑善友(山东省东平县第一中学)函数是中学数学的核心内容。在整个中学数学课程中充当着联系各部分代数知识的“纽带”,同时也为解析几何学习中所需的数、形结合思想奠定了基础。函数是高中数学的主线,是每年高考必考查的重点内容之一,函数与方程、函数与数列、函数与不等式的相互渗透和交叉一直是高考的热点,近年来抽象函数问题、函数与向量结合、函数与概率统计结合、探索创新性问题又成为新的视点,可以说是常考常新。随着新教材课程改革的不断向前发展,高考函数命题已从理论和实践上发生了深刻的变化,给函数问题注入了生机和活力,开辟了许多新的解题途径,拓宽了高考对函数问题的命题空间。下面结合2009年全国各省的高考试题,探讨高考函数问题命题新的趋势,供复习时参考。1 对函数定义的深化理解与函数图象的灵活运用的问题1.(2009年高考数学陕西卷)定义在R上的偶函数满足:对任意的,有.则当时,有 (A) (B) (C) (D) 【答案:】C2. (2009年高考数学山东卷)函数的图象大致为( ).1 x y 1 O A x y O 1 1 B x y O 1 1 C x y 1 1 D O 【解析】:函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A. 答案:A.【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.3.(2009年高考数学江西卷)如图所示,一质点在平面上沿曲线运动,速度大小不变,其在轴上的投影点的运动速度的图象大致为 答案:B【解析】由图可知,当质点在两个封闭曲线上运动时,投影点的速度先由正到0、到负数,再到0,到正,故错误;质点在终点的速度是由大到小接近0,故错误;质点在开始时沿直线运动,故投影点的速度为常数,因此是错误的,故选.4.(2009年高考数学江西卷)设函数的定义域为,若所有点构成一个正方形区域,则的值为A B C D不能确定 答案:B【解析】,选B5.(2009年高考数学山东卷)若函数f(x)=a-x-a(a0且a1)有两个零点,则实数a的取值范围是 .【解析】: 设函数且和函数,则函数f(x)=a-x-a(a0且a1)有两个零点, 就是函数且与函数有两个交点,由图象可知当时两函数只有一个交点,不符合,当时,因为函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是答案: 【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.2 函数的单调性、奇偶性、周期性和对称性的综合应用问题新课标高考中,求函数的值域(或最值)及活用奇偶性、单调性、周期性及对称性成为热点问题,重点考查二次函数、指数函数、对数函数、分段函数及抽象函数的有关性质,并且利用函数性质灵活解题.函数的单调性常用来判断、证明、比较大小,求单调区间及有关参数的范围,奇偶性则经常扩展到图象的对称性,且与单调性和周期性联系在一起,解决较复杂的问题.尤其值得注意的是,凡涉及到函数、方程和不等式的问题,必须首先考虑定义域,这也是学生解决问题时容易忽略的地方. 6.(2009年高考数学山东卷)已知定义在R上的奇函数,满足,且在区间0,2上是增函数,若方程f(x)=m(m0)在区间上有四个不同的根,则 【解析】:因为定义在R上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间0,2上是增函数,所以在区间-2,0上也是增函数.如图所示,那么方程f(x)=m(m0)在区间上有四个不同的根,不妨设由对称性知所以-8 -6 -4 -2 0 2 4 6 8 y x f(x)=m (m0) 答案:-8【命题立意】:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题, 运用数形结合的思想和函数与方程的思想解答问题.7.(2009年高考数学山东卷)定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( )A.-1 B. 0 C.1 D. 2【解析】:由已知得,所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.答案:C.【命题立意】:本题考查归纳推理以及函数的周期性和对数的运算.8.(2009年高考数学山东卷)已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则( ). A. B. C. D. 【解析】:因为满足,所以,所以函数是以8为周期的周期函数, 则,又因为在R上是奇函数, ,得,而由得,又因为在区间0,2上是增函数,所以,所以,即,故选D. 答案:D.【命题立意】:本题综合考查了函数的奇偶性、单调性、周期性等性质,运用化归的数学思想和数形结合的思想解答问题. 3 以分段函数为主线的问题9.(2009天津卷文)设函数则不等式的解集是( )A B C D 【答案】A【解析】由已知,函数先增后减再增当,令解得。当,故 ,解得【考点定位】本试题考查分段函数的单调性问题的运用。以及一元二次不等式的求解。10.(2009年高考数学上海卷)有时可用函数 描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关。(1) 证明:当时,掌握程度的增加量总是下降;(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,。当学习某学科知识6次时,掌握程度是85%,请确定相应的学科。证明(1)当而当,函数单调递增,且0故单调递减 当,掌握程度的增长量总是下降 (2)由题意可知0.1+15ln=0.85整理得解得由此可知,该学科是乙学科 4 以抽象函数为主线的问题11.(2009年高考数学四川卷)已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是 (( )()( A.0 B. C.1 D. 【考点定位】本小题考查求抽象函数的函数值之赋值法,综合题。(同文12)解析:令,则;令,则由得,所以,故选择A。12.(2009年高考数学全国卷)函数的定义域为R,若与都是奇函数,则( ) (A) 是偶函数 (B) 是奇函数 (C) (D) 是奇函数解: 与都是奇函数,函数关于点,及点对称,函数是周期的周期函数.,即是奇函数。故选D13.(2009年高考数学江西卷)已知函数是上的偶函数,若对于,都有,且当时,则的值为 ( )A B C D答案:C【解析】,故选C.点评:本题融抽象函数、函数的单调性、数列等知识于一体,解题思路是:赋值(化抽象为具体)作恒等变形逆用函数单调性将函数关系式转化为自变量间的关系式(数列中an与Sn的关系)。利用抽象条件,通过合理赋值(赋具体值或代数式)、整体思考、找一个具体函数原型等方法去探究函数的性质。如奇偶性、周期性、单调性、对称性等,再运用相关性质去解决有关问题,是求解抽象函数问题的常规思路。其中合理赋值起关键性的作用。对抽象函数问题的考查在近几年高考中有逐年增加数量的趋势。 5 以三次函数为主线的问题14.(2009年高考数学山东卷)已知函数,其中 (1) 当满足什么条件时,取得极值?(2) 已知,且在区间上单调递增,试用表示出的取值范围.解: (1)由已知得,令,得,要取得极值,方程必须有解,所以,即, 此时方程的根为,所以 当时,x(-,x1)x 1(x1,x2)x2(x2,+)f(x)00f (x)增函数极大值减函数极小值增函数所以在x 1, x2处分别取得极大值和极小值.当时, x(-,x2)x 2(x2,x1)x1(x1,+)f(x)00f (x)减函数极小值增函数极大值减函数所以在x 1, x2处分别取得极大值和极小值.综上,当满足时, 取得极值. (2)要使在区间上单调递增,需使在上恒成立.即恒成立, 所以设,令得或(舍去), 当时,当时,单调增函数;当时,单调减函数,所以当时,取得最大,最大值为.所以当时,此时在区间恒成立,所以在区间上单调递增,当时最大,最大值为,所以综上,当时, ; 当时, 【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.15.(2009年高考数学天津卷)(本小题满分12分)设函数()当曲线处的切线斜率()求函数的单调区间与极值;()已知函数有三个互不相同的零点0,且。若对任意的,恒成立,求m的取值范围。【答案】(1)1(2)在和内减函数,在内增函数。函数在处取得极大值,且=函数在处取得极小值,且=【解析】解:当所以曲线处的切线斜率为1. (2)解:,令,得到因为当x变化时,的变化情况如下表:+0-0+极小值极大值在和内减函数,在内增函数。函数在处取得极大值,且=函数在处取得极小值,且=(3)解:由题设, 所以方程=0由两个相异的实根,故,且,解得因为若,而,不合题意若则对任意的有则又,所以函数在的最小值为0,于是对任意的,恒成立的充要条件是,解得 综上,m的取值范围是【考点定位】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力。16.(2009年高考数学福建卷)已知函数,且 (1) 试用含的代数式表示b,并求的单调区间;(2)令,设函数在处取得极值,记点M (,),N(,),P(), ,请仔细观察曲线在点P处的切线与线段MP的位置变化趋势,并解释以下问题:(I)若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;(II)若存在点Q(n ,f(n), x n1时, 当x变化时,与的变化情况如下表:x+单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为。当时,此时有恒成立,且仅在处,故函数的单调增区间为R当时,同理可得,函数的单调增区间为和,单调减区间为 综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为.()由得令得由(1)得增区间为和,单调减区间为,所以函数在处取得极值,故M()N()。观察的图象,有如下现象:当m从-1(不含-1)变化到3时,线段MP的斜率与曲线在点P处切线的斜率之差Kmp-的值由正连续变为负。线段MP与曲线是否有异于H,P的公共点与Kmp的m正负有着密切的关联;Kmp=0对应的位置可能是临界点,故推测:满足Kmp的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线在点处的切线斜率;线段MP的斜率Kmp当Kmp=0时,解得直线MP的方程为 令当时,在上只有一个零点,可判断函数在上单调递增,在上单调递减,又,所以在上没有零点,即线段MP与曲线没有异于M,P的公共点。当时,.所以存在使得即当MP与曲线有异于M,P的公共点 综上,t的最小值为2.(2)类似(1)于中的观察,可得m的取值范围为解法二:(1)同解法一.(2)由得,令,得由(1)得的单调增区间为和,单调减区间为,所以函数在处取得极值。故M().N() () 直线MP的方程为由得线段MP与曲线有异于M,P的公共点等价于上述方程在(1,m)上有根,即函数上有零点.因为函数为三次函数,所以至多有三个零点,两个极值点.又.因此, 在上有零点等价于在内恰有一个极大值点和一个极小值点,即内有两不相等的实数根.等价于 即又因为,所以m 的取值范围为(2,3)从而满足题设条件的r的最小值为2.点评:以上三题融三次函数、导数、不等式、方程等知识于一体,主要考查导数在三次函数的极值与单调性问题中的应用。新增导数内容后,近几年高考卷中陆续出现考查三次函数的最值、极值、单调性、图象等内容,导数为这类问题的解决提供了新的方法。这类问题虽然难度不大,但具有内容新、背景新、方法新等特点。 6 以向量知识为背景的函数问题17.(2009年高考数学四川卷)设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:设是平面上的线性变换,则 若是平面上的单位向量,对,则是平面上的线性变换; 对,则是平面上的线性变换; 设是平面上的线性变换,则对任意实数均有。其中的真命题是 (写出所有真命题的编号)【答案】【解析】:令,则故是真命题 同理,:令,则故是真命题 :,则有 是线性变换,故是真命题 :由,则有 是单位向量,0,故是假命题【备考提示】本小题主要考查函数,对应及高等数学线性变换的相关知识,试题立意新颖,突出创新能力和数学阅读能力,具有选拔性质。点评:本题融向量、函数、导数、含参数的不等式等知识于一体,解题思路是:将向量间的几何(位置)关系数量化(坐标关系),利用导数研究函数的单调性。由于向量具有几何表示和代数表示的特点,这就使其成为近几年高考表述函数问题的重要载体。以向量知识为背景的函数问题常常在高考中作为“把关题”,对此,复习中我们要引起高度重视。7 函数与其他知识网络交汇点问题现实世界中的问题解决往往不只是由单一的知识能解决,而是需要几科或一科内的几个知识综合起来才能解决.考试说明明确要求要注重学科的内在联系和知识的综合,高考命题充分体现了这方面的要求.函数与其它数学知识、其它学科知识的结合,渗透大学的数学知识联系等,这些综合问题,需要扎实掌握各部分的知识,科学架设桥梁,全面分析问题,从而达到解决问题的目的.18.(2009高考数学陕西卷)设曲线在点(1,1)处的切线与x轴的交点的横坐标为,则的值为( )(A) (B) (C) (D) 1答案:B解析: 对,令得在点(1,1)处的切线的斜率,在点(1,1)处的切线方程为,不妨设,则, 故选 B.【考点定位】本试题考察了导数的应用,求切线的方程以及错位相消的数学思想。19.若曲线存在垂直于轴的切线,则实数的取值范围是 .解析 解析:由题意该函数的定义域,由。因为存在垂直于轴的切线,故此时斜率为,问题转化为范围内导函数存在零点。解法1 (图象法)再将之转化为与存在交点。当不符合题意,当时,如图1,数形结合可得显然没有交点,当如图2,此时正好有一个交点,故有应填或是。解法2 (分离变量法)上述也可等价于方程在内有解,显然可得20.(2009江苏卷) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.【解析】本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。(1)若,则(2)当时, 当时, 综上(3)时,得,当时,;当时,0,得:讨论得:当时,解集为;当时,解集为;当时,解集为.21.(2009年高考数学广东卷)已知二次函数的导函数的图像与直线平行,且在处取得极小值设(1)若曲线上的点到点的距离的最小值为,求的值;(2)如何取值时,函数存在零点,并求出零点 解:(1)依题可设 (),则; 又的图像与直线平行 , , 设,则 当且仅当时,取得最小值,即取得最小值当时, 解得 当时, 解得 (2)由(),得 当时,方程有一解,函数有一零点;当时,方程有二解,若,函数有两个零点,即;若,函数有两个零点,即;当时,方程有一解, , 函数有一零点 综上,当时, 函数有一零点;当(),或()时,函数有两个零点;当时,函数有一零点.22.(2008年高考数学江苏卷第18题)设平面直角坐标系中,设二次函数的图象与坐标轴有三个交点,经过这三个交点的圆记为C。(1) 求实数的取值范围;(2) 求圆的方程;问圆是否经过某定点(其坐标与无关)?请证明你的结论解:本小题主要考查二次函数图象与性质、圆的方程的求法()令0,得抛物线与轴交点是(0,b);令,由题意b0 且0,解得b1 且b0()设所求圆的一般方程为令0 得这与0 是同一个方程,故D2,F令0 得0,此方程有一个根为b,代入得出Eb1所以圆C 的方程为.()圆C 必过定点,证明如下:假设圆C过定点 ,将该点的坐标代入圆C的方程,并变形为 (*)为使(*)式对所有满足的都成立,必须有,结合(*)式得,解得经检验知,点均在圆C上,因此圆C 过定点。8 现实生活中函数的实际问题23.(2009年高考数学山东卷)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。A B C x 解法一:(1)如图,由题意知ACBC,其中当时,y=0.065,所以k=9所以y表示成x的函数为(2),令得,所以,即,当时, ,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数有最小值.解法二: (1)同上.(2)设,则,所以当且仅当即时取”=”.下面证明函数在(0,160)上为减函数, 在(160,400)上为增函数.设0m1m2160,则 ,因为0m1m242402409 m1m29160160所以,所以即函数在(0,160)上为减函数.同理,函数在(160,400)上为增函数,设160m1m2400,则因为1600m1m2400,所以49160160所以,所以即函数在(160,400)上为增函数.所以当m=160即时取”=”,函数y有最小值,所以弧上存在一点,当时使建在此处的垃圾处理厂对城A和城B的总影响度最小.【命题立意】:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题.9 函数与概率的整和脱颖而出24(2009年高考湖南模拟)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.()求的分布及数学期望;()记“函数f(x)x23x1在区间2,上单调递增”为事件A,求事件A的概率.解:(I)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件A1,A2,A3. 由已知A1,A2,A3相互独立,P(A1)=0.4,P(A2)=0.5,P(A3)=0.6.客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以的可能取值为1,3.P(=3)=P(A1A2A3)+ P()= P(A1)P(A2)P(A3)+P()=20.40.50.6=0.24,1 3 P0.760.24P(=1)=10.24=0.76.所以的分布列为E=10.76+30.24=1.48.()因为所以函数上单调递增,要使上单调递增,当且仅当从而评注:函数与概率统计的交汇在高考中还是初见端倪,虽然难度不大,但具有内容新、背景新、结构新的特点,预计在今后的高考中将会设计的更加灵活、更能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国拖拉机放线车行业投资前景及策略咨询研究报告
- 2025年度防水工程承包合同
- 2025至2031年中国四方叶片锁行业投资前景及策略咨询研究报告
- 2025至2031年中国助驳接爪行业投资前景及策略咨询研究报告
- 2025年安徽省高考数学对标命题2(教师版)
- 2025年公有土地租赁合同样本
- 2025至2030年中国离心力卸料离心机数据监测研究报告
- 门诊部健康教育课件
- 2025至2030年中国接线端子自动装配机数据监测研究报告
- 风险预控管理体系
- 贯彻落实清理规范非融资性担保方案指导意见
- 期中模拟卷(新疆专用)-2024-2025学年八年级英语下学期核心素养素质调研模拟练习试题(考试版)A4
- 2025年签订好的劳动合同模板
- 物理试题2025年东北三省四城市联考暨沈阳市高三质量监测(二)及答案
- 2025广东省深圳市中考数学复习分类汇编《函数综合题》含答案解析
- 七年级地理下册第七单元测试题(人教版)
- 【9道一模】2025年安徽省合肥市蜀山区九年级中考一模道法试卷(含答案)
- 金融工程重点总结
- 控烟知识培训课件
- 设备的技改和更新管理制度
- GB/T 5453-2025纺织品织物透气性的测定
评论
0/150
提交评论