标准差与标准误.doc_第1页
标准差与标准误.doc_第2页
标准差与标准误.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

标准差与标准误【意义】现在国际杂志很多要求需要提供SE值和SD。【概念】标准差的名称有10 余种,如总体标准差、母体标准差、均方根误差、均方根偏差、均方误差、均方差、单次测量标准差和理论标准差等。标准差的定义式为:用样本标准差s 的值作为总体标准差 的估计值。因为样本标准差s 不能直接反映样本平均数?x 与总体平均数u究竟误差多少, 所以, 平均数的误差实质上是样本平均数与总体平均数之间的相对误。标准差是表示个体间变异大小的指标,反映了整个样本对样本平均数的离散程度,是数据精密度的衡 量指标;而标准误反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小 ,是量度结果精密度的指标。【计算方法】Excel中只有计算stand deviation的公式(=stdev()),没有计算stand error的函数。但是stand error=stand deviation/sqrt(样本数),因此我们可以使用一个改良的函数来计算标准误: 其在excel中的表达式为: = STDEV(range of values)/SQRT(number)其中: range of values区域的值是要计算标准误的这些数据; number号码是数据的个数。 标准差表示数据的离散程度,或者说数据的波动大小。标准误表示抽样误差的大小。统计教材上一般都写标准误表示均数的抽样误差,这对于初学者很难理解。这里通过举例来说明含义。比如,有一个学校,学校中共有1000名学生,则这1000名学生可以作为这个学校学生的。如果我想了解所有学生的身高,采用随机抽样,抽取了50人。这50人就是一个。这里需要注意:一个样本并不是指一个人,而是指一次抽样。一个样本可以是1个人,也可以是100人,这里的1和100就是样本大小。从理论上讲,抽样误差表示这样的意思:即如果不止抽样一次,而是抽样10次,每次都50人,那么我就有10个均数和标准差。例如下图,大圈代表总体1000人,一个小圈代表一个样本,即50人。每个样本都能计算计算一个均数和标准差。以这10个均数作为原始数据,仍然能计算出一个均数和标准差,以这10个均数计算出的标准差就称之为标准误。这是理论上的含义,实际的含义就代表抽样误差的大小,即抽取的样本代表性好不好,抽样误差越小,代表性越好,反之,代表性越差。如果我对学校中的1000人都测量了身高,那理论上就没有标准误,也就是没有抽样误差了,因为我测量了总体,这时就不存在标准误了。但是标准差是存在的,因为这1000人的身高肯定不同,肯定会有波动。这里就充分表明了标准差和标准误的区别了。标准差与标准误的意义、作用和使用范围均不同。标准差(亦称单数标准差)一般用s 表示,是表示个体间变异大小的指标,反映了整个样本对样本平均数的离散程度,是数据精密度的衡量指标;而标准误一般用Sx 表示,反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小,是量度结果精密度的指标。样本标准差:样本平均数的标准误:来源:/healthstat/blog/item/9725513f46d1d33a71cf6c76.html标准差与标准误1 标准差标准差(S 或SD) ,是用来反映变异程度,当两组观察值在单位相同、均数相近的情况下,标准差越大,说明观察值间的变异程度越大。即观察值围绕均数的分布较离散,均数的代表性较差。反之,标准差越小,表明观察值间的变异较小,观察值围绕均数的分布较密集,均数的代表性较好。在医学研究中,对于标准差的大小,原则上应该控制在均值的12 %以内,如果标准差过大,将直接影响研究的准确性。数理统计表明,在标准正态分布曲线下的面积是有规律性的,根据这一规律,人们经常用均数加减标准差来计算样本观察值数量的理论分布,并以此来鉴定样本的代表性。即: x 1.0 s 表示68.27 %的观察值在此范围之内; x 1.96 s 表示95 %的观察值在此范围内; x 2.58 s 表示99 %的观察值在此范围内。如果取得的样本资料的实际分布与理论分布非常接近,证明该样本具有代表性。反之,则需要重新修正抽样方法或样本含量。x 1.96 s 是确定正常值的方法,经常在工作中被采用,也称为95 %正常值范围。2 标准误标准误( Sx 或S E ) ,是样本均数的抽样误差。在实际工作中,我们无法直接了解研究对象的总体情况,经常采用随机抽样的方法,取得所需要的指标,即样本指标。样本指标与总体指标之间存在的差别,称为抽样误差,其大小通常用均数的标准误来表示。数理统计证明,标准误的大小与标准差成正比,而与样本含量( n ) 的平分根成反比,即: Sx = S/ n 这就是标准误的计算方法。抽样研究的目的之一,是用样本指标来估计总体指标。例如:用样本均数来估计总体均数。由于两者间存在抽样误差,且不同的样本可能得到不同的估计值,因此,常用“区间估计”的方法,来估计总体均数的范围。即: X 1.96 Sx 表示总体均数的95 %可信区间; X 2.58 Sx 表示总体均数的99 %可信区间。95 %可信区间指的是:在X 1.96 Sx 范围中,包括总体均数的可能性为95 % ,也就是说,在100 次抽样估计中,可能有95 次正确(包括总体均数) ,有5 次错误(不包括总体均数) 。99 %可信区间也是这个道理,只是包括的范围更大。在实际工作中,由于抽取的样本较小,不呈标准正态分布( u 分布) ,而遵从t 分布,所以常用t 值代替1.96 或2.58。可在t 值表上查出不同自由度( n ) 下、不同界值时的t 值。可见到自由度越小, t 值越大,当自由度逐渐增大时, t 值也逐渐接近1.96 或2.58 ,当n = 时, t 值就完全被其代替了。所以,我们常用X t 0.05 Sx 表示总体均数的95 %可信区间,用x t 0.01 Sx 表示总体均数的99 %可信区间。综上所述,标准差与标准误尽管都是反映变异程度的指标,但这是两个不同的统计学概念。标准差描述的是样本中各观察值间的变异程度,而标准误表示每个样本均数间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论