




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
社旗县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设实数,则a、b、c的大小关系为( )AacbBcbaCbacDabc2 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=3 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题4 等于( )A B C D5 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD6 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-17 已知|=3,|=1,与的夹角为,那么|4|等于( )A2BCD138 若直线上存在点满足约束条件则实数的最大值为 A、 B、 C、 D、9 偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为( )A2B1C0D110若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD11(6a3)的最大值为( )A9BC3D12数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D1二、填空题13已知tan=,tan()=,其中,均为锐角,则=14若x,y满足线性约束条件,则z=2x+4y的最大值为15已知函数f(x)=,若f(f(0)=4a,则实数a=16等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=17某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种18在(1+x)(x2+)6的展开式中,x3的系数是三、解答题19设函数f()=,其中,角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0()若点P的坐标为,求f()的值;()若点P(x,y)为平面区域:上的一个动点,试确定角的取值范围,并求函数f()的最小值和最大值20如图在长方形ABCD中,是CD的中点,M是线段AB上的点,(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置21如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值22已知圆C:(x1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程23已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值24设a0,是R上的偶函数()求a的值;()证明:f(x)在(0,+)上是增函数社旗县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:,b=20.120=1,00.90=1acb故选:A2 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题3 【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键4 【答案】D【解析】试题分析:原式考点:余弦的两角和公式.5 【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答6 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.7 【答案】C【解析】解:|=3,|=1,与的夹角为,可得=|cos,=31=,即有|4|=故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题8 【答案】B【解析】如图,当直线经过函数的图象与直线的交点时,函数的图像仅有一个点在可行域内,由,得,9 【答案】D【解析】解:f(x+2)为奇函数,f(x+2)=f(x+2),f(x)是偶函数,f(x+2)=f(x+2)=f(x2),即f(x+4)=f(x),则f(x+4)=f(x),f(x+8)=f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由f(x+4)=f(x),得当x=2时,f(2)=f(2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键10【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力11【答案】B【解析】解:令f(a)=(3a)(a+6)=+,而且6a3,由此可得函数f(a)的最大值为,故(6a3)的最大值为=,故选B【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题12【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D二、填空题13【答案】 【解析】解:tan=,均为锐角,tan()=,解得:tan=1,=故答案为:【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题14【答案】38 【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=23+48=6+32=32,故答案为:3815【答案】2 【解析】解:f(0)=2,f(f(0)=f(2)=4+2a=4a,所以a=2故答案为:216【答案】2 【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q1时,得,即q23q+2=0,解得:q=2故答案为:2【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题17【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏18【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:20三、解答题19【答案】 【解析】解()由点P的坐标和三角函数的定义可得:于是f()=2()作出平面区域(即ABC)如图所示,其中A(1,0),B(1,1),C(0,1)因为P,所以0,f()=,且,故当,即时,f()取得最大值2;当,即=0时,f()取得最小值1【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想20【答案】 【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0t2),则B(2,0),D(0,1),M(t,0),由=2(t2)1=0,解得t=,线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题21【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC直线AE,CF是圆O所在平面的两条垂线,AECF,AEAC,AFACAE=CF=,AEFC为矩形,AC=2,SAEFC=2,作BMAC交AC于点M,则BM平面AEFC,V=2VBAEFC=2=多面体EFABCD体积的最大值为【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等22【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x1),即2xy2=0(2)当弦AB被点P平分时,lPC,直线l的方程为,即x+2y6=0 23【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库防水合同样本
- 二零二五版车用尿素合同范例
- 二零二五版校医聘用合同
- 二零二五房地产租赁居间协议
- 二零二五版担保的法律意见书
- 住宅雨棚加工合同标准文本
- 家政雇佣协议合同书
- 合资企业股权转让协议书范例二零二五年
- 全屋订制合同标准文本
- 临时送货合同样本
- 综合录井仪工作原理演示教学课件
- 小学三年级诗词大会初赛比赛题目课件
- 房建监理大纲(共114)
- 国际工程招投标流程图
- 城市环境卫生工作物资消耗定额
- 液化气站三级安全教育培训试题
- 经济法实用教程(理论部分)(第八版)(何辛)案例分析及参考答案
- 532近代前夜的危机
- 病原微生物实验室生物安全备案专家意见表
- (精心整理)朱德熙_说 “的”
- 《雷锋叔叔,你在哪里》说课稿(附优质教案)
评论
0/150
提交评论