




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
前进区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D2 线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对3 已知变量与正相关,且由观测数据算得样本平均数,则由该观测的数据算得的线性回归方程可能是( )ABCD4 函数有两个不同的零点,则实数的取值范围是( )A B C D5 如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=6 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba7 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆被双曲线截得劣弧长为,则双曲线的离心率为( )A B C D8 如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )ABCD9 若函数f(x)=2x3+ax2+1存在唯一的零点,则实数a的取值范围为( )A0,+)B0,3C(3,0D(3,+)10“4k6”是“方程表示椭圆”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件11一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力12在ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,A=60,则满足条件的三角形个数为( )A0B1C2D以上都不对二、填空题13在空间直角坐标系中,设,且,则 .14已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程15在ABC中,则_16设集合 ,满足,求实数_.17已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 18若log2(2m3)=0,则elnm1=三、解答题19(本小题满分12分)111在如图所示的几何体中,是的中点,.(1)已知,求证:平面; (2)已知分别是和的中点,求证: 平面.20某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望21(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力22选修45:不等式选讲已知f(x)=|ax+1|(aR),不等式f(x)3的解集为x|2x1()求a的值;()若恒成立,求k的取值范围 23已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0)(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程24设f(x)=ax2(a+1)x+1(1)解关于x的不等式f(x)0;(2)若对任意的a1,1,不等式f(x)0恒成立,求x的取值范围前进区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.2 【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上3 【答案】A【解析】解:变量x与y正相关,可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A。4 【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.5 【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目6 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题7 【答案】B 考点:双曲线的性质8 【答案】 D【解析】解:设|AF1|=x,|AF2|=y,点A为椭圆C1: +y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|AF1|=yx=2,2n=2c=2,双曲线C2的离心率e=故选D【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题9 【答案】 D【解析】解:令f(x)=2x3+ax2+1=0,易知当x=0时上式不成立;故a=2x,令g(x)=2x,则g(x)=2+=2,故g(x)在(,1)上是增函数,在(1,0)上是减函数,在(0,+)上是增函数;故作g(x)=2x的图象如下,g(1)=21=3,故结合图象可知,a3时,方程a=2x有且只有一个解,即函数f(x)=2x3+ax2+1存在唯一的零点,故选:D10【答案】C【解析】解:若方程表示椭圆则6k0,且k40,且6kk4解得4k5或5k6故“4k6”是“方程表示椭圆”的必要不充分条件故选C【点评】本题考查的知识点是充要条件的定义,椭圆的标准方程,其中根据椭圆的标准方程及椭圆的简单性质,构造不等式组,求出满足条件的参数k的取值范围,是解答本题的关键11【答案】B 12【答案】B【解析】解:a=3,A=60,由正弦定理可得:sinB=1,B=90,即满足条件的三角形个数为1个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题二、填空题13【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算14【答案】+=1 【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,圆C:(x+4)2+y2=100的圆心为C(4,0),半径R=10,由动圆B与圆C相内切,可得|CB|=Rr=10|BD|,圆B经过点A(4,0),|BD|=|BA|,得|CB|=10|BA|,可得|BA|+|BC|=10,|AC|=810,点B的轨迹是以A、C为焦点的椭圆,设方程为(ab0),可得2a=10,c=4,a=5,b2=a2c2=9,得该椭圆的方程为+=1故答案为: +=115【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:216【答案】【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.17【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件18【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用三、解答题19【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据,所以平面就是平面,连接DF,AC是等腰三角形ABC和ACF的公共底边,点D是AC的中点,所以,即证得平面的条件;(2)要证明线面平行,可先证明面面平行,取的中点为,连接,根据中位线证明平面平面,即可证明结论.试题解析:证明:(1),与确定平面.如图,连结. ,是的中点,.同理可得.又,平面,平面,即平面.考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.20【答案】 【解析】【专题】概率与统计【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)只需求出P(X=k)(k=1,2,3,4)即可记nk为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=所求的分布列为 Y5148 45 42 P数学期望为E(Y)=51+48+45+42=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题21【答案】(1);(2).【解析】22【答案】 【解析】解:()由|ax+1|3得4ax2不等式f(x)3的解集为x|2x1当a0时,不合题意;当a0时,a=2;()记,h(x)=|h(x)|1恒成立,k1【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题23【答案】 【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是椭圆经过点D(2,0),左焦点为,a=2,可得b=1因此,椭圆的标准方程为(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,点P(x0,y0)在椭圆上,可得,化简整理得,由此可得线段PA中点M的轨迹方程是【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题24【答案】 【解析】解:(1)f(x)0,即为ax2(a+1)x+10,即有(ax1)(x1)0,当a=0时,即有1x0,解得x1;当a0时,即有(x1)(x)0,由1可得x1;当a=1时,(x1)20,即有xR,x1;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鸿合触控一体机培训材料
- 蒙氏基础理论培训
- 2025劳动合同 试用期规定
- 2025建筑工程施工合同协议书样本
- 2025更新劳动合同意向书
- 2025美容院承包合同模板
- 2025年采购销售合同
- 2025建筑项目施工合同(对内)工程建筑施工合同
- 2025融资中介合同 融资中介服务协议(详细版)
- 部编人教版七年级道法下册 三年(2022-2024)中考真题分类汇编-道法:专题01 青春时光
- 普通冲床设备日常点检标准作业指导书
- DBT29-265-2019 天津市市政基础设施工程资料管理规程
- -城乡规划法-最新课件
- DB32T 4013-2021 第三方社会稳定风险评估技术规范
- 夏日泛舟海上 (3)
- 垂体瘤-PPT课件
- 钻井井控装置
- ESC指南心包疾病
- 第三章卫星运动基础与GPS卫星星历
- 赣美版(江西)小学四年级美术下全册教案
- 三年级美术下册 第12课《班级小报》课件1 浙美版
评论
0/150
提交评论