耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知an=(nN*),则在数列an的前30项中最大项和最小项分别是( )Aa1,a30Ba1,a9Ca10,a9Da10,a302 设,为正实数,则=( )A. B. C. D.或【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.3 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 则异面直线与所成的角的余弦值为( ) A B C. D4 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A27种B35种C29种D125种5 已知a0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A2B1CD6 设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a27 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD8 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)9 若函数f(x)=a(xx3)的递减区间为(,),则a的取值范围是( )Aa0B1a0Ca1D0a110双曲线:的渐近线方程和离心率分别是( )ABCD11已知函数(),若数列满足,数列的前项和为,则( )A. B. C. D.【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.12已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点二、填空题13在(x2)9的二项展开式中,常数项的值为14函数在点处的切线的斜率是 .15设满足约束条件,则的最大值是_16函数f(x)=的定义域是17若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力18在平面直角坐标系中,记,其中为坐标原点,给出结论如下:若,则;对平面任意一点,都存在使得;若,则表示一条直线;若,且,则表示的一条线段且长度为其中所有正确结论的序号是 三、解答题19(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1 20已知函数f(x)=xlnx,求函数f(x)的最小值21如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 22某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望23【常熟中学2018届高三10月阶段性抽测(一)】已知函数.(1)若函数是单调递减函数,求实数的取值范围;(2)若函数在区间上既有极大值又有极小值,求实数的取值范围.24已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围耿马傣族佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:an=1+,该函数在(0,)和(,+)上都是递减的,图象如图,910这个数列的前30项中的最大项和最小项分别是a10,a9故选:C【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题2 【答案】B.【解析】,故,而事实上,故选B.3 【答案】D【解析】考点:异面直线所成的角.4 【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为1和2两份分给2个社区,当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有5种结果,当三台设备分为1和2两份分给2个社区时,有2C52=20种结果,当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,不同的分配方案有5+20+10=35种结果;故选B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素5 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点C时,直线y=2x+z的截距最小,此时z最小即2x+y=1,由,解得,即C(1,1),点C也在直线y=a(x3)上,1=2a,解得a=故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法6 【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题7 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题8 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B9 【答案】A【解析】解:函数f(x)=a(xx3)的递减区间为(,)f(x)0,x(,)恒成立即:a(13x2)0,x(,)恒成立13x20成立a0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决10【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D11【答案】A. 【解析】12【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.二、填空题13【答案】84 【解析】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题14【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.15【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划16【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x317【答案】【解析】由题意知,且,所以,则.18【答案】【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力由得,错误;与不共线,由平面向量基本定理可得,正确;记,由得,点在过点与平行的直线上,正确;由得,与不共线,正确;设,则有,且,表示的一条线段且线段的两个端点分别为、,其长度为,错误三、解答题19【答案】【解析】解:(1)由题意作出可行域如下,结合图象可知,当过点A(2,1)时有最大值,故Zmax=221=3;(2)由题意作图象如下,根据距离公式,原点O到直线2x+yz=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+yz=0与椭圆+=1相切时最大,联立方程化简可得,116x2100zx+25z2400=0,故=10000z24116(25z2400)=0,故z2=116,故z=2x+y的最大值为【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用20【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题21【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NEOC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平面OCD的距离为方法二(向量法)作APCD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),O(0,0,2),M(0,0,1),(1),设平面OCD的法向量为n=(x,y,z),则=0, =0即取,解得=(,1)(0,4,)=0,MN平面OCD(2)设AB与MD所成的角为,AB与MD所成角的大小为(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d=所以点B到平面OCD的距离为【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力22【答案】 【解析】【专题】概率与统计【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)只需求出P(X=k)(k=1,2,3,4)即可记nk为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=所求的分布列为 Y5148 45 42 P数学期望为E(Y)=51+48+45+42=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题23【答案】(1);(2).【解析】试题分析:(1)原问题等价于对恒成立,即对恒成立,结合均值不等式的结论可得;(2)由题意可知在上有两个相异实根,结合二次函数根的分布可得实数的取值范围是.试题解析:(2)函数在上既有极大值又有极小值,在上有两个相异实根,即在上有两个相异实根,记,则,得,即.24【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论