高等数学II试题6套.doc_第1页
高等数学II试题6套.doc_第2页
高等数学II试题6套.doc_第3页
高等数学II试题6套.doc_第4页
高等数学II试题6套.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等数学II试题一、填空题(每小题3分,共计15分)1设由方程确定,则 。2函数在点沿方向 的方向导数最大。3为圆周,计算对弧长的曲线积分= 。4已知曲线上点处的切线平行于平面,则点的坐标为 或 。5设是周期为2的周期函数,它在区间的定义为,则的傅里叶级数在收敛于 。二、解答下列各题(每小题7分,共35分)1 设连续,交换二次积分的积分顺序。2 计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域。3 设是由球面与锥面围成的区域,试将三重积分化为球坐标系下的三次积分。 4 设曲线积分与路径无关,其中具有一阶连续导数,且,求。5 求微分方程的通解。三、(10分)计算曲面积分,其中是球面的上侧。四、(10分)计算三重积分,其中由与围成的区域。五、(10分)求在下的极值。六、(10分)求有抛物面与平面所围立体的表面积。七、(10分)求幂级数的收敛区间与和函数。高等数学(下)模拟试卷五一 填空题(每空3分,共21分) 已知函数,则 。已知,则 。设L为上点到的上半弧段,则 。交换积分顺序 。.级数是绝对收敛还是条件收敛? 。微分方程的通解为 。二选择题(每空3分,共15分) 函数在点的全微分存在是在该点连续的( )条件。 A充分非必要 B必要非充分 C充分必要 D既非充分,也非必要平面与的夹角为( )。A B C D幂级数的收敛域为( )。A B C D设是微分方程的两特解且常数,则下列( )是其通解(为任意常数)。A BC D在直角坐标系下化为三次积分为( ),其中为,所围的闭区域。A B C D三计算下列各题(共分,每题分)1、已知,求。2、求过点且平行直线的直线方程。3、利用极坐标计算,其中D为由、及所围的在第一象限的区域。四求解下列各题(共分,第题分,第题分) 、利用格林公式计算曲线积分,其中L为圆域:的边界曲线,取逆时针方向。、判别下列级数的敛散性: 五、求解下列各题(共分,第、题各分,第题分) 、求函数的极值。、求方程满足的特解。、求方程的通解。高等数学(下)模拟试卷六一、填空题:(每题分,共21分.)将化为极坐标系下的二重积分 。.级数是绝对收敛还是条件收敛? 。微分方程的通解为 。 二、选择题:(每题3分,共15分.)函数的偏导数在点连续是其全微分存在的( )条件。 A必要非充分, B充分, C充分必要, D既非充分,也非必要,直线与平面的夹角为( )。A B C D幂级数的收敛域为( )。A B C D.设是微分方程的特解,是方程的通解,则下列( )是方程的通解。A B C D 在柱面坐标系下化为三次积分为( ),其中为的上半球体。A B C D三、计算下列各题(共分,每题分)、已知,求、求过点且平行于平面的平面方程。、计算,其中D为、及所围的闭区域。四、求解下列各题(共分,第题7分,第题分,第题分) 、计算曲线积分,其中L为圆周上点到的一段弧。、利用高斯公式计算曲面积分:,其中是由所围区域的整个表面的外侧。、判别下列级数的敛散性: 五、求解下列各题(共分,每题分) 、求函数的极值。、求方程满足的特解。、求方程的通解高等数学(下)模拟试卷七一 填空题(每空3分,共24分)1二元函数的定义域为 2 3的全微分 _5设,则_ 8级数的和s= 二选择题:(每题3分,共15分)1在点处两个偏导数存在是在点处连续的 条件(A)充分而非必要 (B)必要而非充分 (C)充分必要 (D)既非充分也非必要 2累次积分改变积分次序为 (A) (B)(C) (D)3下列函数中, 是微分方程的特解形式(a、b为常数) (A) (B) (C) (D) 4下列级数中,收敛的级数是 (A) (B) (C) (D) 5设,则 (A) (B) (C) (D) 得分阅卷人三、求解下列各题(每题7分,共21分)1. 设,求2. 判断级数的收敛性 3.计算,其中D为所围区域四、计算下列各题(每题10分,共40分)2.计算二重积分,其中是由直线及轴围成的平面区域.3.求函数的极值.4.求幂级数的收敛域.八一、 单项选择题(63分)1、设直线,平面,那么与之间的夹角为( )A.0 B. C. D. 2、二元函数在点处的两个偏导数都存在是在点处可微的( )A.充分条件 B.充分必要条件C.必要条件 D.既非充分又非必要条件3、设函数,则等于( )A. B. C D. 4、二次积分交换次序后为( )A. B. C. D. 5、若幂级数在处收敛,则该级数在处( )A.绝对收敛 B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处( ) A.某邻域内单调减少 B.取极小值 C.某邻域内单调增加 D.取极大值二、 填空题(73分)1、设(4,-3,4),(2,2,1),则向量在上的投影 2、设,那么 3、D为,时, 4、设是球面,则 5、函数展开为的幂级数为 6、 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(47分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。2、求过曲线上一点(1,2,0)的切平面方程。3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。5、求级数的和。四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。五、证明题 (6分)设收敛,证明级数绝对收敛。九一,单项选择题(64分)1、直线一定 ( )A.过原点且垂直于x轴 B.过原点且平行于x轴 C.不过原点,但垂直于x轴 D.不过原点,但平行于x轴 2、二元函数在点处连续 两个偏导数连续 可微 两个偏导数都存在那么下面关系正确的是( )A B. C. D. 3、设,则等于( )A.0 B. C. D. 4、设,改变其积分次序,则I( )A. B. C. D. 5、若与都收敛,则( )A.条件收敛 B.绝对收敛C.发散 C.不能确定其敛散性6、二元函数的极大值点为( ) A.(1,0) B.(1,2) C.(-3,0) D.(-3,2)二、 填空题(84分)1、过点(1,3,2)且与直线垂直的平面方程为2、设,则 3、设D:,则 4、设为球面,则 5、幂级数的和函数为 6、以为通解的二阶线性常系数齐次微分方程为 7、若收敛,则 8、平面上的曲线绕轴旋转所得到的旋转面的方程为 三、计算题(47分)1、设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论