正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D12 设xR,则“|x2|1”是“x2+x20”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件3 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD4 某几何体的三视图如图所示,该几何体的体积是( )ABCD5 定义某种运算S=ab,运算原理如图所示,则式子+的值为( )A4B8C10D136 已知平面向量,若与垂直,则实数值为( )A B C D【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力7 已知f(x)为定义在(0,+)上的可导函数,且f(x)xf(x)恒成立,则不等式x2f()f(x)0的解集为( )A(0,1)B(1,2)C(1,+)D(2,+)8 函数f(x)=tan(2x+),则( )A函数最小正周期为,且在(,)是增函数B函数最小正周期为,且在(,)是减函数C函数最小正周期为,且在(,)是减函数D函数最小正周期为,且在(,)是增函数9 利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a1)0成立的概率是( )ABCD10已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.11“a=2”是“直线x+y=0与直线2xay=0互相垂直”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12若复数满足(为虚数单位),则复数的虚部为( )A1 B C D二、填空题13若命题“xR,|x2|kx+1”为真,则k的取值范围是14函数在点处的切线的斜率是 .15下列四个命题申是真命题的是(填所有真命题的序号)“pq为真”是“pq为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30的角;动圆P过定点A(2,0),且在定圆B:(x2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆16在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是17已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=18已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=三、解答题19在极坐标系下,已知圆O:=cos+sin和直线l:(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标20已知定义域为R的函数是奇函数(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)021【南师附中2017届高三模拟一】已知是正实数,设函数.(1)设 ,求 的单调区间;(2)若存在,使且成立,求的取值范围.22(本小题满分12分)设椭圆的离心率,圆与直线相切,为坐标原点.(1)求椭圆的方程;(2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.23已知函数()若曲线y=f(x)在点P(1,f(1)处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;()若对于x(0,+)都有f(x)2(a1)成立,试求a的取值范围;()记g(x)=f(x)+xb(bR)当a=1时,函数g(x)在区间e1,e上有两个零点,求实数b的取值范围24【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围正蓝旗高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论2 【答案】A【解析】解:由“|x2|1”得1x3,由x2+x20得x1或x2,即“|x2|1”是“x2+x20”的充分不必要条件,故选:A3 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题4 【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键5 【答案】 C【解析】解:模拟执行程序,可得,当ab时,则输出a(b+1),反之,则输出b(a+1),2tan=2,lg=1,(2tan)lg=(2tan)(lg+1)=2(1+1)=0,lne=1,()1=5,lne()1=()1(lne+1)=5(1+1)=10,+=0+10=10故选:C6 【答案】A7 【答案】C【解析】解:令F(x)=,(x0),则F(x)=,f(x)xf(x),F(x)0,F(x)为定义域上的减函数,由不等式x2f()f(x)0,得:,x,x1,故选:C8 【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+(,),函数f(x)=tan(2x+)单调递增,故选:D9 【答案】C【解析】解:由ln(3a1)0得a,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a1)0成立的概率是P=,故选:C10【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.11【答案】C【解析】解:由直线x+y=0与直线2xay=0互相垂直,得:(1)=1,解得:a=2,“a=2”是“直线x+y=0与直线2xay=0互相垂直”的充要条件,故选:C【点评】本题考察了直线互相垂直的性质,考察充分必要条件,是一道基础题12【答案】A【解析】试题分析:,因为复数满足,所以,所以复数的虚部为,故选A. 考点:1、复数的基本概念;2、复数代数形式的乘除运算.二、填空题13【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础14【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.15【答案】 【解析】解:“pq为真”,则p,q同时为真命题,则“pq为真”,当p真q假时,满足pq为真,但pq为假,则“pq为真”是“pq为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为PABC,顶点P在底面的射影为O,则O为ABC的中心,PCO为侧棱与底面所成角正三棱锥的底面边长为3,CO=侧棱长为2,在直角POC中,tanPCO=侧棱与底面所成角的正切值为,即侧棱与底面所成角为30,故正确,如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故正确,故答案为:16【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题17【答案】 【解析】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题18【答案】1 【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(1)=f(1)=1故答案为:1三、解答题19【答案】 【解析】解:(1)圆O:=cos+sin,即2=cos+sin,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2xy=0直线l:,即sincos=1,则直线的直角坐标方程为:yx=1,即xy+1=0(2)由,可得 ,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题20【答案】 【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;经检验,符合题意;(2)由(1)知,f(x)=+;由y=2x的单调性可推知f(x)在R上为减函数; (3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)0等价于f(1+|x|)f(x),即f(1+|x|)f(x); 又因f(x)是R上的减函数,由上式推得1+|x|x,解得xR21【答案】(1)在上单调递减,在上单调递增.(2)【解析】【试题分析】(1)先对函数求导得,再解不等式得求出单调增区间;解不等式得求出单调减区间;(2)先依据题设得,由(1)知,然后分、三种情形,分别研究函数的最小值,然后建立不等式进行分类讨论进行求解出其取值范围:解:(1),由得,在上单调递减,在上单调递增.(2)由得,由条件得. 当,即时,由得.当时,在上单调递增,矛盾,不成立.由得.当,即时,在上单调递减,当时恒成立,综上所述,.22【答案】(1);(2)点在定直线上.【解析】试题解析:(1)由,又,解得,所以椭圆的方程为.设点的坐标为,则由,得,解得又,从而,故点在定直线上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.23【答案】 【解析】解:()直线y=x+2的斜率为1,函数f(x)的定义域为(0,+),因为,所以,所以,a=1所以, 由f(x)0解得x2;由f(x)0,解得 0x2所以f(x)的单调增区间是(2,+),单调减区间是(0,2) () ,由f(x)0解得; 由f(x)0解得所以,f(x)在区间上单调递增,在区间上单调递减所以,当时,函数f(x)取得最小值,因为对于x(0,+)都有f(x)2(a1)成立,所以,即可 则 由解得所以,a的取值范围是 () 依题得,则由g(x)0解得 x1; 由g(x)0解得 0x1所以函数g(x)在区间(0,1)为减函数,在区间(1,+)为增函数又因为函数g(x)在区间e1,e上有两个零点,所以,解得 所以,b的取值范围是【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值24【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立, 记,只需, 即,解得 (2)由,得 ,当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值当时,有;, 所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值综上可知: 当时,函数在取得极大值,没有极小值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论