2018_2019学年高中数学第7章解析几何初步7.3.3.2圆与圆的位置关系学案湘教版.docx_第1页
2018_2019学年高中数学第7章解析几何初步7.3.3.2圆与圆的位置关系学案湘教版.docx_第2页
2018_2019学年高中数学第7章解析几何初步7.3.3.2圆与圆的位置关系学案湘教版.docx_第3页
2018_2019学年高中数学第7章解析几何初步7.3.3.2圆与圆的位置关系学案湘教版.docx_第4页
2018_2019学年高中数学第7章解析几何初步7.3.3.2圆与圆的位置关系学案湘教版.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时圆与圆的位置关系学习目标1掌握圆与圆的位置关系及判定方法2能利用直线与圆的位置关系解决简单的实际问题3体会用代数方法处理几何问题的思想知识链接1判断直线与圆的位置关系的两种方法为代数法、几何法2两圆的位置关系有外离、外切、相交、内切、内含预习导引1圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d0),则r1,r.解解得a4,b0,r2,或a0,b4,r6,故所求圆的方程为(x4)2y24或x2(y4)236.规律方法两圆相切时常用的性质有:(1)设两圆的圆心分别为O1,O2,半径分别为r1,r2,则两圆相切(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦)跟踪演练1求与圆(x2)2(y1)24相切于点A(4,1)且半径为1的圆的方程解设所求圆的圆心为P(a,b),则1.(1)若两圆外切,则有123,联立,解得a5,b1,所以,所求圆的方程为(x5)2(y1)21;(2)若两圆内切,则有|21|1,联立,解得a3,b1,所以,所求圆的方程为(x3)2(y1)21.综上所述,所求圆的方程为(x5)2(y1)21或(x3)2(y1)21.要点二与两圆相交有关的问题例2已知圆C1:x2y22x6y10,圆C2:x2y24x2y110,求两圆的公共弦所在的直线方程及公共弦长解设两圆交点为A(x1,y1),B(x2,y2),则A,B两点坐标是方程组的解,得:3x4y60.A,B两点坐标都满足此方程,3x4y60即为两圆公共弦所在的直线方程易知圆C1的圆心(1,3),半径r13.又C1到直线AB的距离为d.|AB|22,即两圆的公共弦长为.规律方法1.两圆相交时,公共弦所在的直线方程若圆C1:x2y2D1xE1yF10与圆C2:x2y2D2xE2yF20相交,则两圆公共弦所在直线的方程为(D1D2)x(E1E2)yF1F20.2公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解跟踪演练2求两圆x2y22x10y240和x2y22x2y80的公共弦所在直线的方程及公共弦长解联立两圆的方程得方程组两式相减得x2y40,此即为两圆公共弦所在直线的方程法一设两圆相交于点A,B,则A,B两点坐标满足方程组解得或所以|AB|2,即公共弦长为2.法二由x2y22x10y240,得(x1)2(y5)250,其圆心坐标为(1,5),半径长r5,圆心到直线x2y40的距离为d3.设公共弦长为2l,由勾股定理得r2d2l2,即50(3)2l2,解得l,故公共弦长2l2.1圆O1:x2y22x0和圆O2:x2y24y0的位置关系为()A相离 B相交 C外切 D内切答案B解析圆O1的圆心坐标为(1,0),半径长r11;圆O2的圆心坐标为(0,2),半径长r22;1r2r1|O1O2|0)外切,则r的值是()A. B. C5 D.答案D解析由题意可知2r,r.5已知两圆x2y210和(x1)2(y3)220相交于A,B两点,则直线AB的方程是_答案x3y0解析2x6y0,即x3y0.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作一、基础达标1圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A内切 B相交C外切 D相离答案B解析两圆圆心分别为(2,0),(2,1),半径长分别为2和3,圆心距d.32d32,两圆相交2圆C1:x2y22x2y20和圆C2:x2y24x2y10的公切线的条数为()A1 B2 C3 D4答案B解析圆C1:(x1)2(y1)24,圆心C1(1,1),半径长r12,圆C2:(x2)2(y1)24,圆心C2(2,1),半径长r22,两圆圆心距为|C1C2|,显然0|C1C2|4,即|r1r2|C1C2|r1r2,所以两圆相交,从而两圆有两条公切线3一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A1.4米 B3.5米C3.6米 D2米答案B解析建立如图所示的平面直角坐标系如图设蓬顶距地面高度为h,则A(0.8,h3.6),半圆所在圆的方程为:x2(y3.6)23.62,把A(0.8,h3.6)代入得0.82h23.62.h43.5(米)4已知半径为1的动圆与圆(x5)2(y7)216相切,则动圆圆心的轨迹方程是()A(x5)2(y7)225B(x5)2(y7)217或(x5)2(y7)215C(x5)2(y7)29D(x5)2(y7)225或(x5)2(y7)29答案D解析设动圆圆心为(x,y),若动圆与已知圆外切,则41,(x5)2(y7)225;若动圆与已知圆内切,则41,(x5)2(y7)29.5圆C1:(x2)2(ym)29与圆C2:(xm)2(y1)24相切,则m的值为_答案5,2,1,2解析圆C1:(x2)2(ym)29的圆心为(2,m),半径长为3,圆C2:(xm)2(y1)24的圆心为(m,1),半径长为2.当C1、C2外切时有32,即m23m100,解得m2或m5;当C1,C2内切时有32,即m23m20解得m1或m2.6两圆x2y2xy20和x2y25的公共弦长为_答案解析由得两圆的公共弦所在的直线方程为xy30,圆x2y25的圆心到该直线的距离为d,设公共弦长为l,l2.7求圆心为(2,1)且与已知圆x2y23x0的公共弦所在直线经过点(5,2)的圆的方程解设所求圆的方程为(x2)2(y1)2r2,即x2y24x2y5r20,已知圆的方程为x2y23x0,得公共弦所在直线的方程为x2y5r20,又此直线经过点(5,2),545r20,r24,故所求圆的方程为(x2)2(y1)24.二、能力提升8设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|()A4 B4 C8 D8答案C解析两圆与两坐标轴都相切,且都经过点(4,1),两圆圆心均在第一象限且横、纵坐标相等设两圆的圆心分别为(a,a),(b,b),则有(4a)2(1a)2a2,(4b)2(1b)2b2,即a,b为方程(4x)2(1x)2x2的两个根,整理得x210x170,ab10,ab17.(ab)2(ab)24ab10041732,|C1C2|8.9以圆C1:x2y24x10与圆C2:x2y22x2y10相交的公共弦为直径的圆的方程为()A(x1)2(y1)21B(x1)2(y1)21C.D.答案B解析两圆方程相减得公共弦所在直线的方程为xy0,因此所求圆的圆心的横、纵坐标相等,排除C,D选项,画图可知所求圆的圆心在第三象限,排除A.故选B.10与直线xy20和曲线x2y212x12y540都相切的半径最小的圆的标准方程是_答案(x2)2(y2)22解析曲线化为(x6)2(y6)218,其圆心C1(6,6)到直线xy20的距离为d5.过点C1且垂直于xy20的直线为y6x6,即yx,所以所求的最小圆的圆心C2在直线yx上,如图所示,圆心C2到直线xy20的距离为,则圆C2的半径长为.设C2的坐标为(x0,x0),则,解得x02(x00舍去),所以圆心坐标为(2,2),所以所求圆的标准方程为(x2)2(y2)22.11求过点A(0,6)且与圆C:x2y210x10y0切于原点的圆的方程解法一将圆C化为标准方程得(x5)2(y5)250,则圆心坐标为(5,5),所以经过此圆心和原点的直线方程为xy0.设所求圆的方程为(xa)2(yb)2r2,由题意得解得于是所求圆的方程是(x3)2(y3)218.法二由题意知所求的圆经过点(0,0)和(0,6),所以圆心一定在直线y3上,又由法一知圆心在直线xy0上,所以由得圆心坐标为(3,3)所以r3,故所求圆的方程为(x3)2(y3)218.三、探究与创新12已知隧道的截面是半径为4 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m,高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?解以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为x2y216(y0)将x2.7代入,得y3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度因此,货车不能驶入这个隧道将xa代入x2y216(y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论