高中数学分层抽样与系统抽样教学案北师大版.docx_第1页
高中数学分层抽样与系统抽样教学案北师大版.docx_第2页
高中数学分层抽样与系统抽样教学案北师大版.docx_第3页
高中数学分层抽样与系统抽样教学案北师大版.docx_第4页
高中数学分层抽样与系统抽样教学案北师大版.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22分层抽样与系统抽样预习课本P1215,思考并完成以下问题(1)分层抽样的概念是什么?(2)分层抽样的应用范围是什么?其抽样步骤是什么?(3)系统抽样的概念是什么?(4)系统抽样的应用范围是什么?其抽样步骤是什么?1分层抽样(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本这种抽样方法通常叫作分层抽样,有时也称为类型抽样(2)适用范围:当总体是由差异明显的几部分组成时,往往选用分层抽样(3)抽样步骤:将总体按一定标准进行分层;计算各层的个体数与总体的个体数的比;按各层的个体数占总体的比例确定各层应抽取的样本容量;在每一层进行抽样(可用简单随机抽样或下面讲的系统抽样)点睛(1)在每层进行抽样时,大多数情况下是采用简单随机抽样,有时也会采用其他方法,这要根据问题的需要来决定(2)每个个体被抽到的可能性都是,与层数无关2系统抽样(1)定义:系统抽样是将总体的个体进行编号,等距分组,按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本系统抽样又叫等距抽样或机械抽样(2)适用范围:适用于样本容量较大, 且个体之间无明显差异的情况(3)抽样步骤:假设要从容量为N的总体中抽取容量为n的样本第一步,编号:先将总体的N个个体进行编号;第二步,分段:确定分段间隔k,对编号进行分段,当n能整除N时,k;当n不能整除N时(设整除所得余数为r),先从总体中随机剔除(可采用简单随机抽样方法剔除)r个个体,此时k;第三步:定起始编号:在第一段用简单随机抽样确定第一个个体编号l(lk);第四步,抽取样本:按照一定的规则抽取样本通常是将l加上间隔k得到第2个个体编号(kl),再加k得到第3个个体编号(2kl),依次进行下去,直到获取整个样本点睛(1)分段间隔k不是自己随意指定的,而是根据总体容量和样本容量计算出来的(2)确定起始编号后,在此编号的基础上,加上分段间隔的整数倍即得抽样编号1判断正误(正确的打“”,错误的打“”)(1)从标有115号的15个球中,任选3个球作样本,按从小号到大号排列,随机选择起点i(1i5),然后选标号为i,i5,i10的球入样,是系统抽样()(2)某工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验,是分层抽样()(3)为调查某商场的顾客满意度,规定在商场出口随机抽一人进行询问,直到调查到事先规定的调查人数为止,是分层抽样()(4)在报告厅对与会听众进行调查,通知每排(每排人数相同)座位号为14的听众留下座谈,是分层抽样()答案:(1)(2)(3)(4)2某商场想通过检验发票的2%来快速估计每月的销售总量,采取如下办法:从第一本50张的发票存根中随机抽出1张,如第15张,将所有的发票存根叠放在一起,然后按顺序依次抽取第65张,第115张,第165张,发票上的销售额组成一个调查样本,这种抽样的方法是()A简单随机抽样B系统抽样C分层抽样 D抽签法解析:选B由题意知分段间隔k50,第一段的发票编号分别为1,2,3,50,抽取的号码是15,即l15,抽出的发票中任意相邻两张的间隔相同,故为系统抽样3某集团有老年职工270人,中年职工540人,青年职工810人为了更好地调查他们的健康情况,需从所有职工中抽取一个容量为36的样本,应采用的抽样方法是_解析:由于健康情况与年龄密切相关,不同年龄的人群其健康情况会有明显的差异,因此采用分层抽样的方法较合适故填分层抽样答案:分层抽样分层抽样典例(1)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A抽签法B随机数法C系统抽样法 D分层抽样法(2)某家电视台在因特网上征集某电视节目现场参与的观众,报名的总人数为12 000人,分别来自4个城区,其中东城区2 400人,西城区4 600人,南城区3 800人,北城区1 200人,从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程解析(1)显然男、女学生在学习兴趣与业余爱好方面存在明显差异,应当分层抽取,故宜采用分层抽样答案:D(2)解:采用分层抽样的方式抽取参加现场节目的观众,步骤如下:第一步分层按城区分为四层:东城区、西城区、南城区、北城区第二步确定抽样比样本容量n60,总体容量N12 000,故抽样比k.第三步按比例确定每层抽取个体数在东城区抽取2 40012(人),在西城区抽取4 60023(人),在南城区抽取3 80019(人),在北城区抽取1 2006(人)第四步在各层分别用简单随机抽样法抽取样本将各城区抽取的观众合在一起组成样本(1)如果总体中的个体有差异时,就用分层抽样抽取样本,用分层抽样抽取样本时,要把性质、结构相同的个体,组成一层(2)每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取的比例都等于样本容量在总体中的比例,即抽样比.这样抽取能使所得到的样本结构与总体结构相同,可以提高样本对总体的代表性活学活用1某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n()A9B10C12 D13解析:选D由分层抽样可得,解得n13.2某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取_名学生解析:由分层抽样的方法可得,从一年级本科生中抽取学生人数为30060.答案:60系统抽样典例某单位共有在岗职工624人,为了调查职工上班时从离开家到单位的平均用时,决定抽取10%的工人进行调查,如何采用系统抽样完成这一抽样?解第一步由题意知,应抽取在岗职工62人作为样本,即分成62组,由于的商是10,余数是4,所以每组有10人,还剩4人这时,抽样距是10;第二步用随机数法从这些职工中抽取4人,不进行调查;第三步将余下的在岗职工620人进行编号,编号分别为000,001,002,619;第四步在第一组000,001,002,009这10个编号中,随机选定一个起始编号每间隔10抽取一个编号,共抽62个编号,这样就抽取了容量为62的一个样本当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等,剔除几个个体后使总体中剩余的个体数能被样本容量整除活学活用1要从已编号(161)的61枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A5,10,15,20,25,30 B3,13,23,33,43,53C1,2,3,4,5,6 D16,25,34,43,52,61解析:选B先用简单随机抽样剔除1个个体,再重新编号抽取,则间隔应为10,故B正确2某校高中三年级的295名学生已经编号为1,2,3,295,为了了解学生的学习情况,要按15的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程解:按15的比例抽样.295559.第一步,把295名学生分成59组,每组5人第一组是编号为15的5名学生,第二组是编号为610的5名学生,依次类推,第59组是编号为291295的5名学生第二步,采用简单随机抽样,从第一组的5名学生中随机抽取1名,不妨设其编号为k(1k5)第三步,从以后各段中依次抽取编号为k5i(i1,2,3,58)的学生,再加上从第一段中抽取的编号为k的学生,得到一个容量为59的样本.抽样方法的综合应用典例为了考察某学校的教学水平,现抽取这个学校高三年级的部分学生本学年的考试成绩进行考察为了全面反映实际情况,采取以下三种方式进行抽查(已知该学校高三年级共有20个教学班,并且每个班内的学生按随机方式编好了学号,假定高三年级每班学生人数都相同):从全年级20个班中任意抽取一个班,再从该班任意抽取20人,考察他们的学习成绩;每个班都抽取1人,共计20人,考察这20个学生的成绩;把学生按成绩分成优秀、良好、普通三个级别,从中共抽取100名学生进行考察(已知若按成绩分,该校高三1 000名学生中优秀生共150人,良好生共600人,普通生共250人)根据上面的叙述,回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?按每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中,各自采用何种抽样方法?(3)试分别写出上面三种抽取方式抽取样本的步骤(4)比较以上三种方式,哪种方式更好地考察出学校的教学水平?解(1)上面三种抽取方式中,其总体都是高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩其中第一种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第三种抽取方式中样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)采用的是简单随机抽样法;采用的是系统抽样法和简单随机抽样法;采用的是分层抽样法和简单随机抽样法(3)的抽样步骤如下:第一步,在这20个班中用抽签法任意抽取一个班第二步,从这个班中按学号用随机数法或抽签法抽取20名学生,考察其考试成绩的抽样步骤如下:第一步,在第一个班中,用简单随机抽样法抽取某一学生,记其学号为a.第二步,在其余的19个班中,选取学号为a的学生,共计20人的抽样步骤如下:第一步,分层由于按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,故在抽取样本时,应把全体学生分成三层第二步,确定各个层抽取的人数由于样本容量与总体的个体数的比为1001 000110,故在每层抽取的个体数依次为,即15,60,25.第三步,按层分别抽取在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人(4)由于总体容量较大,且个体差异大,故第三种方式(分层抽样)能较好地考察出学校的教学水平 (1)三种抽样方法的比较类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的机会均等从总体中逐个抽取总体中的个体数较多,且无明显差异系统抽样将总体均匀分成若干部分,按事先确定的规则在各部分中抽取在起始部分抽样时采用简单随机抽样总体中的个体数较少,且无明显差异分层抽样将总体分成互不交叉的层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成(2)如何抽取样本,直接关系到对总体估计的准确程度,因此,抽样时要保证每一个个体都可能被抽到,且每一个个体被抽到的机会是均等的,满足这样条件的抽样才是随机抽样活学活用某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中做问卷调查(1)如果要在所有答卷中抽出150份用于评估应如何抽取才能得到比较客观的评价结论,请详细叙述抽样过程?(2)如果要在所有答卷中抽出120份用于评估应如何运用系统抽样的方法从4 000名高中生的答卷中抽取64份样本,请详细叙述抽样过程?解:(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样因为样本容量为150,总体个数为5003 0004 0007 500,则抽样比为,所以有50010,3 00060,4 00080,所以在教职员工、初中生、高中生的答卷中抽取的个体数分别是10,60,80.分层抽样的步骤是:第一步,分层:分为教职员工、初中生、高中生,共三层第二步,确定每层抽取个体的个数:在教职员工、初中生、高中生的答卷中抽取的个体数分别是10,60,80.第三步,各层分别按简单随机抽样或系统抽样的方法抽取样本(具体抽样过程见后面的叙述)第四步,综合每层抽样,组成样本这样便完成了整个抽样过程,就能得到比较客观的评价结论其中,第一层(教职员工)500份答卷中选10份,由于制作500个号签费时费力,且难以保证搅拌均匀,不适合采用抽签法,采用随机数表法、系统抽样的方法均可法一:(随机数表法)步骤:编号,将500份答卷都编上号码:000,001,002,499;在随机数表上随机选取一个起始位置;规定读数方向如向右连续取数字,以3个数为一组,如果读取的三位数大于499,则去掉,如果遇到相同号码则只取一个,这样一直到取满10个号码为止法二:(系统抽样法)步骤:将这500名教职员工的答卷编号为1,2,3,500;按150,51100,101150,451500分成十组,每组50个编号;在第一组中运用抽签法随机选择一个编号(步骤略),比如所选号码为17,则其他各组号码分别为67,117,167,217,267,317,367,417,467.获取样本:将上述10个号码代表的答卷取出作为样本第二层(初中生)3 000份答卷选60份要制作3 000个号签,费时费力,因此更不适合抽签法可以采用随机数表法或系统抽样的方法(具体步骤略)第三层(高中生)亦是如此(2)由于4 0006462.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,62,从中随机抽取一个号码,如若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,3 929.层级一学业水平达标1某学校高一、高二、高三学生分别有280人、320人、400人为了解各年级学生的课余时间安排,拟从全体学生中抽取100人进行调查,则宜采用的抽样方法是()A抽签法B随机数法C系统抽样法 D分层抽样法答案:D2要完成下列两项调查:从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;从某中学的15名艺术特长生中选出3人调查学习负担情况宜采用的抽样方法依次为()A简单随机抽样法,系统抽样法B分层抽样法,简单随机抽样法C系统抽样法,分层抽样法D都用分层抽样法解析:选B各层间差距较大,宜用分层抽样;总体较少,宜用简单随机抽样3某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A4 B5C6 D7解析:选C抽取的植物油类食品种数为202(种),抽取的果蔬类食品种数为204(种),故抽取的植物油类与果蔬类食品种数之和是6.4某班级有52名学生,现将学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知6号,32号,45号学生在样本中,那么在样本中还有一个学生的编号是_号解析:由13,知抽样间隔为13,抽取的编号依次为6,19,32,45,故还有一个学生的编号为19.答案:19层级二应试能力达标1某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为()A11B12C13 D14解析:选B依据系统抽样为等距抽样的特点,分42组,每组20人,区间481,720包含25组到36组,每组抽1人,则抽到的人数为12.2为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()A3,2 B2,3C2,30 D30,2解析:选A因为9230不是整数,因此必须先剔除部分个体数,因为923032,故剔除2个即可,而间隔为3.3交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A101 B808C1 212 D2 012解析:选B由题意知抽样比为,而四个社区一共抽取的驾驶员人数为12212543101,故有,解得N808.4用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1160编号按编号顺序平均分成20组(18号,916号,153160号),若第16组应抽出的号码为125,则第一组中按此抽样方法确定的号码是()A7 B5C4 D3解析:选B设第一组确定的号码为a,则a158125,a5.5某公司生产的三种型号的家用轿车,产量分别是1 200辆、6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取一个容量为46的样本进行检验,那么这三种型号的轿车依次应取_辆、_辆和_辆解析:三种型号的轿车的产量比是1 2006 0002 0003155,所以三种型号的轿车分别抽取的辆数是466(辆),4630(辆),4610(辆)答案:630106某校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本已知从女生中抽取80人,则n_.解析:因为801 0008100,所以n(2001 2001 000)8100,所以n192.答案:1927一个总体中有100个个体,随机编号为0,1,2,99,依编号顺序平均分成10个小组,组号依次为1,2,3,10.现抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与mk的个位数字相同若m6,则在第7组中抽取的号码是_解析:m6,k7,mk13.在第7组中抽取的号码应为63.答案:638一个总体中的1 000个个体编号为0,1,2,999,并依次将其分成10组,组号为0,1,2,9.要用系统抽样方法抽取一个容量为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论