已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2集合的基本关系1了解集合之间包含与相等的含义,能识别给定集合的子集(重点)2理解子集、真子集的概念(易混点)3能使用Venn图表达集合间的关系,体会直观图对理解抽象概念的作用(难点)基础初探教材整理 1子集阅读教材P7从本节开头到“集合Q是集合R的子集”之间的内容,完成下列问题1子集 含义对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,即若aA,则aB,我们就说集合A包含于集合B,或集合B包含集合A,记作AB(或BA),就说集合A是集合B的子集图形语言性质任何一个集合都是它本身的子集,即AA2.Venn图 为了直观地表示集合间的关系,常用封闭曲线的内部表示集合,称为Venn图已知:(1)A高一2班的同学,B高一2班3组的成员;(2)A1,2,3,B1,2,3,4;(3)AN,BZ;(4)A矩形,B长方形以上集合A是集合B的子集的是_(填所有正确选项的序号)【解析】借助Venn图,可知选项(2)、(3)、(4)中集合A是集合B的子集,而选项(1)中应是集合B是集合A的子集,集合A却不是集合B的子集【答案】(2)(3)(4)教材整理 2集合相等阅读教材P7从“对于两个集合A与B”到P8“AB”之间的内容,完成下列问题1. 文字定义对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,同时集合B中的任何一个元素都是集合A中的元素,这时,我们就说集合A与集合B相等,记作AB.2符号表示若AB,且BA,则AB.已知集合A2,9,集合B1m,9,且AB,则实数m_.【解析】AB,1m2,m1.【答案】1教材整理 3真子集阅读教材P8从“对于两个集合A与B”至“例1”以上的内容,完成下列问题1真子集(1)含义:对于两个集合A与B,如果AB,并且AB,我们就说集合A是集合B的真子集,记作AB或BA.(2)当集合A不包含于集合B,或集合B不包含集合A时,记作AB或BA.2性质(1)空集是任何集合的子集,对于任何一个集合A,都有A.(2)对于集合A,B,C,若AB,BC,则AC.判断(正确的打“”,错误的打“”)(1)空集是任何集合的真子集()(2)任何一个非空集合至少有两个子集()(3)0()(4)集合A不能是其自身的真子集()【答案】(1)(2)(3)(4)小组合作型集合间关系的判定下列各式中,正确的个数是()00,1,2;0,1,22,1,0;0,1,2;0;0,1(0,1);00A1B2C3D4【精彩点拨】首先要分清二者是元素与集合间的关系,还是集合与集合之间的关系如果是集合与集合之间的关系,还需要分清是包含、真包含,还是不包含等关系【尝试解答】对于,是集合与集合的关系,应为00,1,2;对于,实际为同一集合,任何一个集合是它本身的子集;对于,空集是任何集合的子集;对于,0是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以0;对于,0,1是含有两个元素0与1的集合,而(0,1)是以有序数组(0,1)为元素的单元素集合,所以0,1与(0,1)不相等;对于,0是含有单元素0的集合,0与0是“属于与否”的关系,所以00故是正确的【答案】B判断集合的基本关系常转化为判定元素与集合间的关系,主要有以下三种方法:再练一题1指出下列各对集合之间的关系:(1)A1,1,B(1,1),(1,1),(1,1),(1,1);(2)Ax|x是等边三角形,Bx|x是等腰三角形;(3)Ax|1x4,Bx|x50;(4)Mx|x2n1,nN,Nx|x2n1,nN【解】(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故AB.(3)集合Bx|x5,用数轴表示集合A,B如图所示,由图可知AB.(4)由列举法知M1,3,5,7,N3,5,7,9,故NM.集合相等已知集合Aa,ab,a2b,Ba,ac,ac2,若AB,求c的值【精彩点拨】欲求c的值,可列关于c的方程或方程组,根据两集合相等的意义及集合中元素的互异性,有下面两种情况:(1)(2)【尝试解答】由集合中元素的互异性,知b0,c1,c0,a0.又AB,或a2acac2或a2ac2ac,即c22c10或2c2c10,又c1,c,故所求实数c的值为.根据两个集合相等求集合中的特定字母,一般是从集合中元素对应相等来建立方程(或方程组).要注意将对应相等的情况分类列全,最后还需要注意将方程(或方程组)的解代入原集合检验,把不符合题意的解舍去.再练一题2已知集合Ax,xy,xy,B0,|x|,y且AB,求实数x与y的值【解】由已知AB0,|x|,y,0A.若x0,则A0,0,y,不满足元素的互异性;若y0,则B0,|x|,0,也不满足元素的互异性只有xy0,即yx,Ax,xy,xyx,x2,0,B0,|x|,xx2|x|,x0(舍),或x1,或x1.当x1时,AB1,1,0,而元素具有互异性,故x1.当x1时,AB1,1,0满足题意xy1即为所求.有限集合子集的确定试写出满足条件M0,1,2的所有集合M.【精彩点拨】欲求M,首先需弄清条件“M0,1,2”的含义由M说明M为非空集合,即M中至少含有一个元素;由M0,1,2知,M中至多含有2个元素,因此M中元素个数为1或2,故可根据元素个数逐一列出集合M.【尝试解答】M0,1,2,M为0,1,2的非空真子集M中的元素个数为1或2.当M中只有1个元素时,M可以是0,1,2;当M中有2个元素时,M可以是0,1,0,2,1,2M可以是0,1,2,0,1,0,2,1,2解答此类问题应根据子集、真子集的概念求解,在写集合的子集或真子集时,一般按元素由少到多的顺序一一列举,可避免重复或遗漏.再练一题3已知a,bAa,b,c,d,e,写出所有满足条件的集合A.【解】a,bA,aA,bA.又Aa,b,c,d,e,集合A为a,b,a,b,c,a,b,d,a,b,e,a,b,c,d,a,b,c,e,a,b,d,e探究共研型已知集合间的关系,求参数的范围探究 1已知集合Ax|x1,Bx|xa,若AB,则实数a的取值是多少?【提示】如图,由图可知a1.探究 2探究1中“AB”改为“AB”,其他条件不变,则实数a的取值范围是多少?【提示】如图,由图可知a1,即实数a的取值范围是a|a1探究 3探究1中“AB”改为“BA”,其他条件不变,则实数a的取值范围是多少?【提示】如图,由图可知a1,即实数a的取值范围是a|a12m,得m.综上所述m0.(2)当m112m,即m时,B,不符合题意当m112m,即m时,借助数轴表示如图所示:则解得m0.即m0.综上所述m0.已知集合关系求参数范围的一般方法:,(1)通常借助数轴,把两个集合在数轴上表示出来,以形定数.,(2)当某一个集合的端点中含有字母时,要判定两个端点的大小,不确定时要分类讨论,当左边的端点大于右边的端点时,集合为空集,这种情况容易被忽视.,(3)比较端点大小时要注意是否能取“”,不好确定时要单独验证参数取“”时的值是否符合题意.再练一题4已知集合Ax|1x2,Bx|a1xa3,若AB,求a的取值范围【解】用数轴表示如图所示:则解得所以1a0,即a的取值范围为a|1a01集合Ax|0x1,那么正确的结论是()A0A B0AC0A DA【解析】由于01,所以0A.而选项A,C,D对于元素与集合、集合与集合的关系使用符号不对,故都是错误的【答案】B3已知集合A1,3,m,B3,4,若BA,则实数m_.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开放式基金交易服务合同
- 2024简单销售代理合同样本
- 合同范本:委托招商引资协议书
- 二手车购车合同协议样本
- 2024照明购销合同
- 企业与高校就业实习协议书参考
- 代理公司注册登记协议书
- 培训机构老师合作协议示例
- 正规版房屋租赁合同协议范本
- 全面聘用合同范本汇编
- 幼儿园办园行为督导评估指标体系表
- (高清版)DB43∕T 2628-2023 埋地排水用UHMW一P∕TE方型增强排水管技术规范
- 河北省保定市定州市2024-2025学年九年级上学期期中考试化学试卷
- 2024-2030年狂犬疫苗行业市场深度分析及发展策略研究报告
- 《基因指导蛋白质的合成》(第 1课时)教学设计
- 2024-2030年果蔬行业市场发展现状及竞争格局与投资战略研究报告
- 2 0 2 4 年 7 月 国开专科《法理学》期末纸质考试 试题及答案
- 大疆在线测评题答案
- 公共政策分析第一章
- 行业协会重大活动备案报告制度
- JGJ48-2014 商店建筑设计规范
评论
0/150
提交评论