已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学 建模 Mathematical Modeling 主讲人:范瑾 Email: Office:信息学院(学院楼2号楼)216 考核方式 平时成绩作业,考勤10% 上机实践实验报 告30% 考试 60% (第二版) 赵赵静 但琦, 高等教育出版社,2003年 数学建模简简介 MATLAB入门门 线线性(整数)规规划 整数线线性规规划 无约约束最优优化 非线线性规规划 动态规动态规 划 微分方程 差分方程 l组组合数学 l最短路问题问题 l匹配与覆盖问题问题 l行遍性问题问题 l网络络流问题问题 l数据的统计统计 分析与描述 l回归归分析 l计计算机模拟拟 l插值值与拟拟合数学 图论图论 1. 数学建模概论 数学模型(Mathematical Model) 是用数学符号、数学式子、程序、图图形等对实对实 际课题际课题 本质质属性的抽象而又简洁简洁 的刻划,它 或能解释释某些客观现观现 象,或能预测预测 未来的发发 展规规律,或能为为控制某一现现象的发发展提供某 种意义义下的最优优策略或较较好策略。 数学建模(Mathematical Modeling) 应应用知识识从实际课题实际课题 中抽象、提炼炼出数学模 型的过过程。 1.1 数学模型与数学建模数学模型与数学建模 1.了解问题问题 的实际实际 背景,明确建模目的,收集掌握 必要的数据资资料。 2.在明确建模目的,掌握必要资资料的基础础上,通过过 对资对资 料的分析计计 算, 找出起主要作用的因素,经经必 要的精炼炼、简简化,提出若干符合客观实际观实际 的假设设。 3.在所作假设设的基础础上,利用适当的数学工具去刻 划各变变量之间间的关系,建立相应应的数学结结构 即 建立数学模型。 4.模型求解。 5.模型的分析与检验检验 。 在难难以得出解析解时时,也 应应当借助 计计算机 求出数 值值解。 1.21.2 数学建模的一般步数学建模的一般步骤骤骤骤 实实体信 息(数据) 假设设建模求解验证验证应应用 1.31.3 数学模型的分数学模型的分类类类类 分分类标类标类标类标准准具体具体类别类别类别类别 对对某个实际问题实际问题 了 解的深入程度 白箱模型、灰箱模型、黑箱模型 模型中变变量的特征连续连续 型模型、离散型模型或确定性模型、随机 型模型等 建模中所用的数学方 法 初等模型、微分方程模型、差分方程模型、优优 化模型等 研究课题课题 的实际实际 范畴人口模型、生 态态系统统模型 、交通 流模型、经经 济济模型、 基因模型等 例1 椅子能在不平的地面上放稳吗稳吗 ? 1.41.4 建模建模实实实实例例 模型假设 1.四条腿一样长样长 ,四脚的连线连线 呈正方形; 2.地面高度是连续变连续变 化的,地面可视为视为 数学上的连续连续 曲面. 3.地面是相对对平坦的,椅子在任何位置至少有三只脚 同时时着地. 4.放稳稳就是椅脚与地面零距离 x B A D C O 模型建立 椅子位置 x B A D C O D C B A 用(对对角线线与x轴轴的夹夹角)表示椅子位 置 放 稳稳 f() g()0 四个距离( 四只脚) 两个距离 椅脚与地面距离为为零 正方形ABCD 绕绕O点旋转转 正方形 对对称性 A,C 两脚与地面距离之和 f() B,D 两脚与地面距离之和 g() 例1 (续续) f() , g()是连续连续 函数 对对任意, f(), g() 至少一个为为0,即 f()*g() =0。设初始状 态 g(0)=0 数学问题问题 : 已知: f() , g()是连续连续 函数 ; 对对任意, f() g()=0 ; 且 g(0)=0, f(0) 0. 证明:存在0,使f(0) = g(0) = 0. 假设设2:地面为连续为连续 曲 面 假设设3:椅子在任意位 置至少三只脚着地 x B A D C O D C B A 例1 (续续) 例1 (续续) 连续 函数的性质 h(x)在闭闭区间间a, b上连续连续 ,且 h(a)h(b) 0 , n = /2时时, f(/2)=0 , g(/2)0 (AC和BD互换换 ). n令h()= f()g(), 则则h(0)0和h(/2)(2001年起) / CUMCM网站: 数学软件 matlab ,matlab程序设计 与应用, 有 电子版教程 lindo,lingo,有电子版教程 数学建模要求知道实际问题实际问题 与某些数学 知识识之间间的对应对应 关系(如哪些问题问题 可用 线线性规规划求解,或线线性规规划可解决哪些 问题问题 ),以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届玉林市重点中学高一物理第一学期期末质量检测模拟试题含解析
- 2025届甘肃省武威市天祝藏族自治县第一中学高二物理第一学期期中考试模拟试题含解析
- 2025届云南省元阳县一中高一物理第一学期期中统考模拟试题含解析
- 上海二中2025届物理高一第一学期期末联考模拟试题含解析
- 2025届安徽省阜阳市物理高一上期末质量检测模拟试题含解析
- 2025届安徽省黉学高级中学物理高一上期中质量检测试题含解析
- 2025届江苏省五校高一物理第一学期期中达标检测试题含解析
- 湖南省岳阳市临湘市2025届高三上物理期中调研模拟试题含解析
- 2025届河北省邯郸市大名县一中高三上物理期中调研试题含解析
- 吉林省吉林市第五十五中学2025届物理高三第一学期期中达标检测模拟试题含解析
- 绿化养护报价表
- 家校沟通案例七篇
- 大学生心理健康教育论文范文3000字(8篇)
- 新保险法试题
- 退行性腰椎间盘病诊疗和阶梯治疗
- 新材料概论课件ppt 第7章 信息功能材料
- 《悦纳至正让儿童生命幸福生长》莞城中心小学品牌培育工作汇报修改版
- 视听语言(山东联盟)知到章节答案智慧树2023年潍坊学院
- 2023年住宅室内装饰装修管理办法
- 眼科病历书写幻灯片
- 《简单教数学》读书-分享-
评论
0/150
提交评论