已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数恒成立问题2016年8月东莞莞美学校一、恒成立问题的基本类型:类型1:设,(1)上恒成立;(2)上恒成立。类型2:设(1)当时,上恒成立,上恒成立(2)当时,上恒成立上恒成立类型3:。类型4:二、恒成立问题常见的解题策略:策略一:利用二次函数的判别式 对于一元二次函数有:(1)上恒成立;(2)上恒成立例1.若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,不等式化为20恒成立,满足题意;(2)时,只需,所以,。策略二:利用函数的最值(或值域)(1)对任意x都成立;(2)对任意x都成立。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。例2.已知,若恒成立,求a的取值范围. 解析 本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意.若恒成立或或,即a的取值范围为. 策略三:利用零点分布例3.已知,若恒成立,求a的取值范围.解析 本题可以考虑f(x)的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即0或或,即a的取值范围为-7,2.点评 对于含参数的函数在闭区间上函数值恒大于等于零的问题,可以考虑函数的零点分布情况,要求对应闭区间上函数图象在x轴的上方或在x轴上就行了.Oxyx-1变式:设,当时,恒成立,求实数的取值范围。解:设,则当时,恒成立当时,显然成立;当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。策略四:分离参数法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立例4.函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得在时恒成立,只要在时恒成立。而易求得二次函数在上的最大值为,所以。 变式:已知函数时恒成立,求实数的取值范围。解: 将问题转化为对恒成立。令,则由可知在上为减函数,故即的取值范围为。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。策略五:确定主元在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变量看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。例5.若不等式对满足的所有都成立,求x的范围。解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:,;令,则时,恒成立,所以只需即,所以x的范围是总结:利用了一次函数有:变式:对任意,不等式恒成立,求的取值范围。分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。解:令,则原问题转化为恒成立()。 当时,可得,不合题意。当时,应有解之得。故的取值范围为。策略六:消元转化例6.已知f(x)是定义在-1,1上的奇函数,且f(1)=1,若,若对于所有的恒成立,求实数t的取值范围. 解析 本题不等式中有三个变量,因此可以通过消元转化的策略,先消去一个变量,容易证明f(x)是定义在-1,1上的增函数,故 f(x)在-1,1上的最大值为f(1)=1,则对于所有的恒成立对于所有的恒成立,即对于所有的恒成立,令,只要, 点评 对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.以上介绍的几种常见不等式恒成立问题的求解策略,只是分别从某个侧面入手去探讨不等式中参数的取值范围。事实上,这些策略不是孤立的,在具体的解题实践中,往往需要综合考虑,灵活运用,才能使问题得以顺利解决。3、 巩固练习1.(1)若关于的不等式的解集为,求实数的取值范围;(2)若关于的不等式的解集不是空集,求实数的取值范围w.w.w.k.s.5.u.c.o.m解:(1)设.则关于的不等式的解集为在上恒成立,即解得(2)设.则关于的不等式的解集不是空集在上能成立,即解得或.2. 若函数在R上恒成立,求m的取值范围。分析:该题就转化为被开方数在R上恒成立问题,并且注意对二次项系数的讨论。略解:要使在R上恒成立,即在R上恒成立。 时, 成立 时,由,可知,3. 已知向量若函数在区间上是增函数,求t的取值范围.解:依定义在区间上是增函数等价于在区间上恒成立;而在区间上恒成立又等价于在区间上恒成立;设进而在区间上恒成立等价于考虑到在上是减函数,在上是增函数,则. 于是, t的取值范围是.4. 已知函数,其中是的导函数.对满足的一切的值,都有,求实数的取值范围;解法1.由题意,这一问表面上是一个给出参数的范围,解不等式的问题,实际上,把以为变量的函数,改为以为变量的函数,就转化为不等式的恒成立的问题,即 令,则对,恒有,即,从而转化为对,恒成立,又由是的一次函数,因而是一个单调函数,它的最值在定义域的端点得到.为此只需 即解得.故时,对满足的一切的值,都有.解法2.考虑不等式.由知,于是,不等式的解为 .但是,这个结果是不正确的,因为没有考虑的条件,还应进一步完善.为此,设.不等式化为恒成立,即.由于在上是增函数,则,在上是减函数,则所以, .故时,对满足的一切的值,都有.5. 若对任意的实数,恒成立,求的取值范围。解法一:原不等式化为令,则,即在上恒大于0。若,要使,即, 不存在若,若使,即 若,要使,即,由,可知,。解法二:,在上恒成立。由,可知,。6. 已知函数对于一切成立,求a的取值范围。7. 已知函数对于恒成立,求m的取值范围。8. 若不等式在内恒成立,求a的取值范围。9.已知函数的定义域为R,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,即有解得。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光伏储能合同能源管理模式(emc)测算表
- 广西建设工程专用合同条款
- 海上货运代理合同 答辩状
- 合同到期搬离通知书
- 大班数学认识半点课件
- 专项8 非连续性文本阅读- 2022-2023学年五年级语文下册期末专项练习
- 2024普通软件产品销售合同
- 2024公司借款保证合同范本
- 深圳大学《印度文化遗产赏析》2021-2022学年第一学期期末试卷
- 菜苗栽种合同(2篇)
- 《临床决策分析》课件.ppt
- 家风家训PPT课件
- 泪道冲洗PPT学习教案
- 部编版六年级语文上册词语表(带拼音)-六上册词语表连拼音
- 浅谈校园影视在学校教育中的作用
- 无公害农产品查询
- 试剂、试药、试液的管理规程
- 研究生课程应用电化学(课堂PPT)
- 通信综合网管技术规格书doc
- 六宫数独可直接打印共192题
- 班会:如何克服浮躁心理PPT优秀课件
评论
0/150
提交评论