基于proe的膨胀动力结构设计.doc_第1页
基于proe的膨胀动力结构设计.doc_第2页
基于proe的膨胀动力结构设计.doc_第3页
基于proe的膨胀动力结构设计.doc_第4页
基于proe的膨胀动力结构设计.doc_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

前言螺杆膨胀机是一门十分年轻的膨胀机种,在技术文献中关于其书籍甚少,因而很难普及。靠气体膨胀消耗内能来对外作功的机械叫原动机或发动机。如燃气轮机、蒸汽轮机、内燃烧机等均是这种动力机械,在实质上都是膨胀机。广义的膨胀机包括发动机狭义膨胀机是指将温度不高的但具有一定压力的气体的 内能转变为机械功的一种动力机械,因此也可叫气体发动机。本文讲的膨胀机主要是对狭义膨胀机而言。按膨胀机能量转换方式的不同,可将膨胀机分为两大类容积式膨胀机和透平膨胀机。不同种类的膨胀机,有着不同的应用范围。一般地讲,容积式膨胀机用于小流量,其中活塞式膨胀机适用于高、中及低压的中小型装置,也就是适用于大膨胀比,小流量的场合。而透平膨胀机主要用于大型装置,即小膨胀比,小流量的场合,因透平膨胀机在高压、小流量的情况下,效率低,所以它的应用受着小气量的限制 。本文讨论的螺杆膨胀机属于容积式膨胀机,是一种新型的膨胀机。近年来日本和西德有人在研究低压螺杆膨胀机,但尚未投入正式商品生产。他们研究的目的,旨在于工业废热回收、地热发电以及制取冷量等。螺杆膨胀机在我国还是一遍未开垦的空白地。螺杆膨胀机用途宽广,可用于低温制冷天然气液化分离化工尾气,烟气,高炉气余热回收地热发电,井口高压天然气压力能回收,亦可在小流量下代替燃气透平,作为新型的燃气发动机用。本文主要进行螺杆膨胀机的结构设计,并应用三维软件绘制出所设计的膨胀机。螺杆膨胀机的心脏部分是带有特殊螺齿的转子副,由于关于螺杆膨胀机的研究我们国家还不是很多,而且螺杆膨胀机的结构与螺杆压缩机相似,两者的工作过程是互逆的,所以在设计过程中借用的螺杆压缩机的转子型线等结构。螺杆压缩机的典型型线结构有SRM齿型,Sigma齿型,X齿型,CF齿型和单边非对称摆线-销齿圆弧齿型,其中最后一种齿型在70年代末被我国规定为螺杆压缩机非对称齿型的标准齿型,已知沿用至今,而本文中正是应用的这种齿型来设计的。第一章 绪论1.1 螺杆膨胀动力机的简介靠气体膨胀消耗内能来对外作功的机械叫原动机或发动机。如燃气轮机、蒸汽轮机、内燃机等均是这种动力机械,在实质上都是膨胀机。广义的膨胀机包括发动机 狭义膨胀机是指将温度不高的但具有一定压力的气体的 内能转变为机械功的一种动力机械 ,因此也可叫气体发动机。本文讲的膨胀机主要是对狭义膨胀机而言。按膨胀机能量转换方式的不同,可将膨胀机分为两大类 容积式膨胀机和透平膨胀机。不同种类的膨胀机 ,有着不同的应用范围。一般地讲,容积式膨胀机用于小流量,其中活塞式膨胀机适用于高、中及低压的中小型装置,也就是适用于大膨胀比,小流量的场合。而透平膨胀机主要用于大型装置,即小膨胀比,小流量的场合,因透平膨胀机在高压、小流量的情况下,效率低,所以它的应用受着小气量的限制。本文讨论的螺杆膨胀机属于容积式膨胀机,是一种新型的膨胀机。近年来日本和西德有人在研究低压螺杆膨胀机,但尚未投入正式商品生产。他们研究的目的,旨在于工业废热回收、地热发电以及制取冷量等。螺杆膨胀机用途宽广,可用于低温制冷天然气液化分离化工尾气 ,烟气 ,高炉气余热回收、地热发电井口高压天然、气压力能回收,亦可在小流量下代替燃气透平,作为新型的燃气发动机用。1.2 螺杆膨胀机发电的工作原理和工作过程螺杆膨胀机的工作周期是由齿间容积 中的进气、膨胀和排气三个过程组成。由于每个齿间容积依次进行这些过程,因而电力的产生是连续不断的,且还省去了必要的飞轮 。在进气过程中,气体直接从径向和轴向迸入,当进气 口关闭时,齿 间容积形成了一个由转和壳体围成的密闭空间,在密闭空间气体膨胀并产生一个转矩。转子的啮合点随气体的膨胀是向排气端移动的,当它抵达排气端时,膨胀过程结束,齿间容积最大。与此同时,在进气端下一个啮合又开始了,其它进气端都有相应的啮合点,排气过程开始,齿间容积减少到与转子的转动相一致。这就是螺杆膨胀机作为容积式发电机的原理。螺杆膨胀机的主要组成部分如图1-1(a) ,1-1(b) 。图1-1(a) 螺杆膨胀机结构图图1-1(b) 螺杆膨胀机结构图1.径向轴承 2.径向止推轴承 3.阴螺杆转子 4.密封5.密封 6.同步齿轮 7.阳螺杆转子 8.缸体在节圆外具有凸齿的转子叫阳转子,在节圆内具有凹齿的转子叫阴转子螺杆膨胀机工作过如图1-2所示 。图1-2 螺杆膨胀机工作过程螺杆膨胀机是容积式膨胀机械 ,其运转过程从吸气过程开始 ,然后气体在封闭的齿间容积中膨胀,最后移至排气过程 在膨胀机机体两端,分别开设一定形状和大小的孔口,一个是吸气孔 口 ,一个是排气孔口。阴、阳螺杆和气缸之间形成的呈“V”字形的一对齿间容积值随着转子的回转而变化 ,同时 ,其位置在空间也不断移动 。(1)吸气过程图图1-2a高压气体由吸气孔口分别进入阴 、阳螺杆“V ”字形的齿间容积,推动阴、阳螺杆向彼此背离的方向旋转,这两个齿间容积不断扩大,于是不断进气 ,当这对齿间容积后面一齿一旦切断吸气孔口时,这时齿间容积的吸气过程也就结束,膨胀过程开始图1-2b。(2)膨胀过程图1-2c在吸气过程结束后的齿间容积对里充满着高压气休 ,其压力高于顺转向前面一对齿间容积对里的气体压力,在压力差的作用下,形成一定的转矩,阴、阳螺杆转子便朝相互背离的方向转去,于是齿间容积变大,气体膨胀,螺杆转子旋转对外作功。转子继续回转,经某转角后,阴、阳螺杆齿间容积脱离 ,再转一个角度,当阴螺杆齿间容积的后齿从阳螺杆齿间容积中离开时,这时阴、阳齿间容积值达最大值,膨胀结束,排气开始 。(3)排气过程图1-2d,当膨胀结束时,齿间容积与排气孔口接通,随着转子的回转,两个齿间容积因齿的侵入不断缩 ,将膨胀后的气体往排气端推赶,尔后经排气孔口排出,此过程直到齿间容积达最小值为止 。螺杆啮合所形成的每对齿间容积里的气体进行的上述三个过程是周而复始的 ,所以机器便不停地旋转。1.3 螺杆膨胀机特点就气体膨胀原理而言,螺杆膨胀机与活塞膨胀机一样,同属于容积式膨胀机就其工作件运动形式而言,螺杆膨胀机转子与透平膨胀机转子一样,作高速旋转运动 。故螺杆膨胀机兼有二者的特点。螺杆膨胀机具有较高的齿顶线速度,转速可达每分钟万转以上 。膨胀机小螺杆膨胀机没有曲轴活塞连杆机构,凸轮配气机构,也无进排气阀,结构非常借单,零件数极少,基本无易损件因此运转可靠,寿命长也不存在不平衡惯性力矩,所以甚至可以实现无基础运转。螺杆膨胀机是从高压膨胀到低压,不可能象螺杆压缩机那样进行喷油运转,抓油靠气体压力自动循环。因此螺杆膨胀机通常为干式运转,除非另加 油泵,进行强制性喷油循环在干式螺杆膨胀机中,由于阴 、阳螺杆齿面间,齿顶 与缸孔间存在着间隙 ,因而内泄漏损失大,特别是在低转速时容积效率较低。但由于齿间间隙的存在,则可用于含液的二相流气体如地热发电站的全流螺杆膨胀机,含水、含原油的天然气压力能回收用螺杆膨胀机 ,也可用于含粉尘的气体 如烟气,燃气螺杆膨胀机螺杆膨胀机既可在设计压力下工作,也可在低的吸气压力下工作,即对吸气压力下降变工况的适应能力,不过有附加损失而已螺杆膨胀机 既可在设计气量下工作,也可在小于设计气量下工作,但回收能量亦呈减少趋势螺杆齿面是一空间曲面,加工精度要求很高,需要特制的刀具在专用机床上进行加工,我国有几个工厂,在螺杆庄缩机加工方面已积累了不少宝贵经验 ,对于螺杆膨胀机的制造是不存在问题的 。螺杆齿形及螺杆参数可采用国标 JB2409一85 “螺杆压缩机转子和同步齿轮基本参数及尺寸 ”的规定 ,也可采用效率高的新齿形。1.4 国内外研究概况螺杆膨胀机的研究最早可追溯1952年,当时,H.R.Nillsen已取得了螺杆膨胀机作为动力机的专利。60年代初,美国劳伦斯辐射实验室进行了高温用石墨螺杆膨胀机实验,所用工质是惰性气体氢,而螺杆膨胀机作为汽液两相膨胀机的尝试始于1971年。1973年,美国水热电力公司的R.Sprankle则获得了螺杆膨胀机用于地热发电的专利。最初的螺杆膨胀机汽液两相实验室实验是1975年在美国Lawerence Livemore Liboratary简记(LLL)进行的,但当时的实验参数范围较窄。1977年,该实验室用同一台螺杆膨胀机再度实验,其结果揭示了汽液两相螺杆膨胀机的一些特性。由于实验中采用“节流法 ”生成不同干度的工质,故实验干度范围较小。1981年,美国加州大学伯克利分校对LLL用过的螺杆机的密封做了改进后又进行了实验,获得了较丰富的实验数据,并对螺杆机内部损失的机理提出 了一些看法。在实验室研究的过程中,螺杆膨胀机应用于地热的现场实验也同时展开。1971年至1973年,美国水热电力公司将两台螺杆空气压缩机改为膨胀机,并分别在加里福尼亚Imperial Valley和墨西哥Cerro Prieto进行了现场实验。80年代初,在世界能源组织IEA的资助下,美国水热电力公司设计、建造了1MW大型螺杆膨胀机发电机组,并分别在新西兰、意大利和墨西哥作了实验。我国对全流螺杆膨胀机的研究始于80年代。当时,天津大学热能研究所结合西藏地热发电科研课题开展了螺杆膨胀机全流系统的研究。1987年,,该所建造了我国第一套螺杆膨胀机全流实验装置。目前天津大学热能工程系仍在进行这方面的研究,“汽液全流螺杆膨胀机发电技术”已被列为国家“九五 ”期间技术改造示范项目。1.5 螺杆膨胀机技术特点螺杆膨胀机的技术特点主要有以下几点: 它是一种容积式的全流动力设备,能适应过热蒸汽、饱和蒸汽、汽水两相流体和热水(包括高盐分热水)工质; 无级调速,转速一般设计为(15003000)r/min,相比同功率汽轮机,有较高的内效率,一般在65%以上; 在热源参数、功率及热负荷50%变化范围内,能保持平稳工作且较高运行效率; 单机功率在(502000)Kw; 设备紧凑,占地少,工程施工量小; 操作方便,运行维护简单,而且具有除垢自洁能力,大修周期长; 起动不需要盘车、暖机。噪音低、平稳、安全、可靠,全自动无人值守运行;热源范围 直接驱动螺杆膨胀动力机的热源应用范围如下: 蒸汽参数: 0.15MPa 3.0MPa,温度 170 间接应用的热源范围如下: 蒸汽参数:压力 0.1MPa 以下的各种蒸汽双循环发电 热水参数:压力 65 的热水双循环发电 烟气参数:温度 200 的各种烟气配余热锅炉发电 1.6 本课题研究的主要内容及方法本课题着重对螺杆膨胀机的转子进行设计计算,以及对转子外壳及前后机座的设计,相关设计参数如下:1)进口蒸汽设计参数:1.0MPa, 180 2)出口蒸汽设计参数:0.07MPa, 90 3)流量设计:22 t/h(或者44t/h )4)折合到排气口的排量为:5)内效率:75%80%6)阳转子圆周速度8)发电功率: 500KW9外形尺寸:10)调节类型:电器控制11)系统重量:3000系统设计如下图1-3:图1-3 螺杆膨胀机系统设计第二章 螺杆膨胀机设计设计分析螺杆膨胀机的设计主要是对螺杆转子的设计,包括接触线、泄漏三角形、封闭容积、齿间面积的设计,而这些要素的设计最主要的是取决于转自型线的设计,所以本设计主要叙述对螺杆膨胀机得转子型线的设计。本设计中采用阳转子右旋,阴转子左旋。2.1 转子型线的设计2.1.1转子型线及其要素螺杆膨胀机最关键的是一对相互啮合的转子,转子的齿面与转子轴线垂直面的截交线称为转子型线。对于螺杆膨胀机的转子型线的要求,主要是在齿间容积之间有优越的密封性能,因为这些齿间容积是实现气体膨胀的工作腔。对螺杆膨胀机性能有重大影响的转子型线要素有接触线、泄漏三角形、封闭容积和齿间面积等。(1)接触线。螺杆膨胀机的阴、阳齿子啮合时,两转子齿面相互接触而形成的空间曲线称为接触线。如果转子间的接触线不连续,则在高压力区内的气体将通过接触线中断缺口,向低压力区泄漏。阴、阳转子型线啮合时的啮合点轨迹,称为啮合线。啮合线是知识接触线在转子面上的投影。显然接触线连续,意味着啮合线应该是一条连续的封闭曲线。(2)泄漏三角形。在接触线顶点和机壳的转子气缸孔之间,会形成一个空间曲边三角形,称为泄漏三角形。若啮合线顶点距阴、阳转子齿顶圆的交点较远,则说明泄漏三角形面积较大。(3)封闭容积。如果在齿间容积开始扩大时,不能立即开始吸气过程,就会产生吸气封闭容积。吸气封闭容积的存在,影响了齿间容积的正常充气。从转子型线可定性看出封闭容积的大小。(4)齿间面积。它是齿间容积在转子端面上的投影。转子型线的齿间面积越大,在相同的导程下,转子的齿间容积就越大。2.1.2转子型线的设计原则(1)满足啮合要求。螺杆膨胀机的阴、阳转子型线必须是满足啮合定律的共轭线。(2)形成较为合适长度的连续接触线。既要减少气体通过间隙带的泄露,又要求较小面积的泄漏三角形。(3)应使封闭容积较小。吸气封闭容积导致膨胀机功耗增加、效率降低、噪声增大。所以转子型线应使封闭容积尽可能的小。(4)齿间面积尽量大。较大的齿间面积是泄漏量占得份额相对减少,效率得到提高。2.2 型线方程和啮合线方程2.2.1建立坐标系及坐标变换(1)坐标系建立为了用数学方程描述螺杆膨胀机的型线中各段组成齿曲线,建立如图2-1所示的四个坐标系:图2-1 坐标系关系图1)固结在阳转子的动坐标系2)固结在阴转子的动坐标系3)阳转子静坐标系4)阴转子静坐标系由于螺杆膨胀机的阴、阳转子之间是定传动比啮合,固有: (2-1)式中,、为阴、阳转子转角;、为阴、阳转子转速;、为阴、阳转子的角速度;、为阴阳转子节圆半径;,为阴阳钻子的齿数;为传动比;A为阴阳转子中心距。(2)坐标变换螺杆膨胀机转子型线上的每一点,都可以表示在上述四个坐标系中,这些坐标系之间的变换关系式如下:a)动做标系与静坐标系的变换 (2-2)b)动坐标系与静坐标系的变换 (2-3)c)静坐标系与静坐标系的变换 (2-4)d)动坐标系与动坐标系的变换 (2-5)e)动坐标系与动坐标系的变换 (2-6)2.2.2齿曲线及其共轭曲线(1)齿曲线方程及其参数变换范围螺杆膨胀机的转子型线通常由多段组成齿曲线相接而成。在设计转转型线时,通常先在阳转子或者阴转子上给定一些组成齿曲线,用如下的参数方程表示在相应的转子动坐标系中: (2-7)上式中,参数的始点和终点决定了此组曲线的起点b和终点e的坐标和。(2)齿曲线的共轭曲线方程转子组成齿曲线的共轭曲线,是指另一个转子上与所选定的组成齿曲线相啮合的曲线段,现在假定已在阴转子上给定了一段组成齿曲线2为 (2-8)1)求出阴转子上组成齿曲线想对于阳转子运动时的曲线簇将方程式(2-8)带人坐标变换式(2-5),得 (2-9)2)找出曲线簇的包络条件把包络条件的显函数形式带入曲线簇方程(2-9),就是曲线簇的包络线方程,即 (2-10)此包络线上任一点的切线斜率可微分上式,得 (2-11)与包络线共切于该点的曲线簇中的一条曲线(为常数),其斜率为 (2-12)由于是公切线,这两切线的斜率应该相等,令式(2-11)与式(2-12)右边相等,整理得: (2-13)或是 (2-14)同样,若假定在阳转子上给定了一段组成齿曲线1,即 (2-15) 将曲线一的方程(2-15)带入动坐标变换式(2-6),得到曲线簇的方程为: (2-16)经类似的推演,可得到其包络条件为: (2-17)3)求共轭曲线方程若已在阴转子上给定了一段组成曲线2为: (2-18)则其共轭曲线方程,可用方程(2-10)及补充条件联立表示,即 (2-19) 同样,若已在阳转子上给定了一段曲线1为: 则其共轭曲线方程,可用方程(2-16)及补充条件联立表示,即: (2-20)4)共轭曲线的啮合线方程共轭曲线的啮合线方程一般式可表示为: (2-21) 第三章 转子型线设计3.1 单边不对称摆线销齿圆弧形线对于螺杆膨胀机转子,在阴阳转子之间的动力的传递只按照某一转向恒定的,因而转子的两边齿廓不需要无条件的造成对称,只要尽可能完善的密封就好。螺杆膨胀机按螺杆压缩机的逆原理工作,其基本构造与螺杆压缩机相似,工作过程相反。本设计采用我国规定的螺杆压缩机标准的单边不对称摆线销齿圆弧型线。如3-1所示:图3-1 单边不对称摆线销齿圆弧型线其组成齿曲线如下表3.1:表3.1 单边不对称摆线销齿圆弧型线个段得组成曲线阳转子阴转子齿廓曲线性质齿廓曲线性质AB直线GH摆线BC圆弧HI圆弧CD摆线I点D点IJ摆线DE直线JK摆线EF圆弧KL圆弧这种单边不对称摆线销齿圆弧型线与原始不对称型线的主要区别在于:采用径向直线AB及DE倒棱修正,去除了原始不对称型线外圆上的摆线形成点,并使摆线IJ的形成点想内移动。另外,将圆弧齿曲线扩大角度,形成保护角,使摆线CD的形成点I处于阳转子外圆之内,保护了度啮合性能很敏感的摆线形成点。修正后,便于转子在加工、安装、运行及储运中保护摆线形成点。但使接触线顶点与转子齿顶圆交点距离略有增大,使通过泄漏三角形的泄露量增加。为此,通常限制直线段的长度在0.5-2mm的允许范围内。处在低压侧的直线段AB的长度,由于不影响气密性,通常从工艺出发,使其与圆弧BC光滑过度。3.2 转子各段齿曲线方程1)AB与GH AB方程阴转子上的AB为一径向直线,其方程为: (3-1)参数的变化范围为: (3-2)由三角形,有: (3-3) (3-4) 即: (3-5) 式中,、分别为阴阳转子的齿数,R为齿高半径,在标准中,规定。 GH方程阳转子上的GH为阴转子上径向直线AB 的共轭曲线,将AB的方程(3-1)带入(2-5)得曲线簇方程为: (3-6)故有 : 将上述诸条件式带入包络条件式(2-14),可得位置参数与曲线参数的关系为: (3-7)联立(3-6)(3-7)可得到GH的方程,可发现GH的性质是一个摆线。 啮合线方程AB和GH啮合时的啮合线方程,可按(2-21)式,通过把AB的方程(3-1)带入坐标变换式(2-3),并与包络条件式(3-7)联立得到,即: (3-8)2)BC与HIBC方程阴转子上的曲线BC为一圆心在节点P,半径为R的圆弧,又称销齿圆弧,其方程为: (3-9)参数为: (3-10) 由直角三角形,有: 为保护角,通常为-,标准规定为。HI方程阳转子上的曲线HI是阴转子上销齿圆弧BC的共轭曲线,将方程(3-9)带入坐标变换式(2-5),的曲线簇方程为: (3-11)故有: 将上述诸式带入包络条件式(2-14),可得包络条件为: 即: (3-12)由此可见,BC与HI仅在的位置啮合,而且是整条曲线同时啮合。把式(3-12)带入式(3-11),得到简化后的HI方程为: (3-13)销齿圆弧的共轭曲线仍是一完全的销齿圆弧,两曲线仅在的瞬间啮合,而且是沿着整个圆弧段同时啮合。啮合线方程把BC方程(3-9),带入坐标变换(2-3),并与包络条件(3-12)联立,得到啮合线方程为: (3-14)式(3-14)表明,销齿圆弧的啮合线是与销齿圆弧一样的圆弧。3)I点与CDI点方程阳转子上的I点为一固定点,在坐标系中的方程为: (3-15) 而又三角形可知: CD方程阴转子上的CD曲线是与阳转子上I点共轭的曲线,将I点方程(3-15)带入坐标变换式(2-6)得: (3-16) 参数变化范围为: (3-17) 阴转子CD曲线上任一点距阴转子中心的距离可用下式表示: (3-18)将式(3-16)代入(3-18),整理得: 即: (3-19) 故: (3-20) (3-21) 其中 (3-22) 其中e称为径向直线修正长度,标准规定为e=0.625%A。啮合线方程将I点方程(3-15)代入坐标变换式(2-2),并考虑到包络条件自然满足,得到啮合线方程为: (3-23)其参数变化范围仍由式(3-17)确定。I点与其共轭曲线CD啮合时,其啮合线就是以阳转子中心为圆心,以I点到的距离为半径的圆弧,即I点在静止坐标系中的运动轨迹。4 )D点与IJ D点方程阴转子上的D点为一固定点,在坐标系中的坐标为: (3-24)其中 由曲线CD方程(3-16),有: (3-25) 式中由式(3-21)确定。 IJ方程将D点的方程(3-24)代入坐标变换式(2-5),即得IJ方程为: (3-26) 参数变化范围为: (3-27) 阴转子IJ曲线上任有点距阳转子中心的距离可用下式表示: (3-28) 将式(3-26)代入(3-28)中,得: 即 (3-29) (3-30) (3-31) 方程在直角三角形中, (3-32)Z在三角形中, (3-33) 啮合线方程将D点方程(3-24)代入坐标变换式(2-3)中,并考虑到包络条件自然满足,得到啮合线方程为: (3-34)其参数变化范围仍由式(3-27)确定。其啮合线就是D点在静坐标系中的轨迹,即以为圆心,以D点到的距离为半径的圆弧。5)DE与JK DE方程阴转子上的DE为一径向直线,其方程为: (3-35) 参数的变化范围为: (3-36)JK方程将DE的方程(3-35)代入坐标变化(2-5),得曲线簇方程为: (3-37)故有 将上述诸式代入包络条件式(2-14),得到曲线参数与转角参数的关系为: (3-38)其参数变化范围由式(57)确定,式(58)表明JK的性质是一摆线。 啮合线方程把DE的方程(3-35)代入坐标变换式(2-3),并与包络条件式(3-38)联立,即得到其啮合线方程为: (3-39)其参数变化范围由式(3-36)确定。6)EF与KL EK方程阴转子上EF曲线为一圆心,半径为的圆弧,其方程为: (3-40)参数t和变化范围为: (3-41)2)KL方程将EF的方程(3-40)代入坐标变换式(2-5),得: (3-42)故有: 将上述诸式代入包络条件(2-14),可得包络条件为 (3-43)把式(3-43)代入式(3-42),整理后得: (3-44)其参数变化范围仍由式(3-41)确定。从式(3-44)可以看出,KL是圆心在,半径为的圆弧,这说明节圆圆弧的共轭曲线仍为节圆圆弧。 啮合线方程把EF的方程(3-40)代入坐标变换式(3),得: (3-45)上式表明节圆圆弧的啮合点是一固定点,即节点P。第四章 螺杆膨胀机转子尺寸设计4.1 螺杆公称直径和长径比螺杆直径是关系到螺杆膨胀动力机系列化和零件标准化、通用化的一个重要参数。确定螺杆直径系列的原则是:在最佳圆周速度的范围内,以尽可能少的螺杆直径规格数来满足尽可能广泛的排气量范围。通常,在系列标准中,螺杆直径按某种优选数系选取。我国规定螺杆直径系列为(mm):(63)、(80)、(100)、125、160、200、250、315、400、500、630、(800)。带括号的直径只适用于不对称齿形,其中以160、200、250、315最为常用。由于排气量与螺杆直径的平方成正比,相邻系列螺杆直径的排气量数值差别较大,特别是在螺杆直径较大时尤为显著。为此,在各螺杆直径下,列出几个长径比值,以变化排气量范围,能使相邻系列螺杆直径的排气量交错相接。如前所述,所谓长径比是指螺杆压缩机的轴向长度l,与螺杆(公称)直径D0的比值,并记做 .其通常范围是 。排气量相同时,长径比小的机器其螺杆直径较大,吸排气空口面积也大,因而气体流动损失较小。近代螺杆压缩机目前用 值多为1或1.5.当排量不变时,降低相对长度 ,则螺杆直径上升。因此吸气口与排气口的面积也增大,不但减少气体进入时与排出时的压力损失,而且螺杆直径变大,转子具有良好的刚性在此次设计中,为了获得所需的排量,我们选择螺杆公称直径为100mm,长径比为1.5,即螺杆相对长度为150mm。4.2 导程和扭转角我国螺杆系列标准的导程T、长径比 、扭转角 列于表4.1中。通常,节圆圆柱面上的螺旋角不大于60。过大的螺旋角,使螺杆齿面扭曲得厉害,恶化了螺杆的切削工艺性。螺杆的扭转角 、导程T及长度l之间的关系为: (4-1)或用长径比 表示为: (4-2) 表4.1 导程T、长径比、扭转角齿形及项目短导程长导程特长导程对称圆弧齿形导程TT1=4/3D,T2=2DT1=1.8D,T2=2.7D-长径比(0.9)1.01.2(1.18)1.321.50阳螺杆扭转角243270324236264300阴螺杆扭转角162180216157.3176200不对称齿形导程TT1=1.2D0,T2=1.8D0T1=1.8D0,T2=2.7D0T1=2.7D0,T2=4.05D0长径比(0.8)0.91.0(1.2)1.351.5(1.8)(2.0)(2.25)阳螺杆扭转角240270300240270300240266.7300阴螺杆扭转角160180200160180200160177.8200由以上两式及表4.1可以看出:1) 螺杆直径和导程确定后,长径比与扭转角成正比;2) 如前所述,螺杆的扭转角变动范围不大。由此,螺杆直径为某定值时,导程与长径比只有不多的组合方案,以得到上述的扭转角度数值。3) 对同一螺杆直径而言,大螺旋角 对应于短导程,小螺旋角对应于长导程。内压力比相同时,具有大螺旋角的螺杆,能得到较大的径向与轴向排气孔面积,如图4-1所示: 图4-1 螺旋角对排气孔口面积的影响4.3 螺杆设计4.3.1 螺杆转子齿型参数的确定单边不对称-销齿圆弧型线齿廓的端面形状主要由以下参数决定:阳转子齿数z1 阴转子齿数z2中心距a 阳转子直径D1阴转子直径D2 齿高半径 R=25.625%a阴转子节圆直径 Dw1 阳转子节圆直径 Dw2 此外还有齿的螺旋数据转子长度L 阳转子导程h1目前通用的结构,阳转子齿数z1=4,阴转子齿数z2=6。 在阳转子长度上螺齿的扭角为: ,本设计选取300。阳转子转速: 阴转子转速:节圆螺旋角:国标JBT2049-1999规定螺杆压缩阴阳转子的尺寸如下表4.2:表4.2 螺杆压缩机阴阳转子尺寸转子公称直径中心距A节圆直径齿高半径外径阴转子直线段阳转子阴转子阳转子阴转子6350.440.3260.4812.91566.1560.480.315806451.276.816.48476.80.410080649620.5105960.51251008012025.625131.251200.625参照表表4.1和表4.2可计算出螺杆膨胀机的参数,列于表4.3中:表4.3 螺杆膨胀机的阴阳转子参数参数阳转子阴转子齿数中心距A(mm)节圆直径Dw(mm)齿根圆直径Di(mm)齿顶圆直径D(mm)齿高半径R(mm)R=20.5扭转角 ()转速(r/min)倒程(mm)转子螺杆长度L(mm)L=150节圆螺旋角径向直线修正长度4.3.2阴阳转子螺杆的设计转子的螺旋状工作段以外的部分,按通常的转轴要求进行设计。尺寸如下:1. 阳转子 1-2段:,其中A为由材料许用扭转应力所确定的系数,45钢为25-45,取A=30。则可算出,此段与发电机转轴相接,根据联轴器的直径,为保证硬顶的强度,取=32mm ,=85mm。 2-3段:2-3段安装轴承和进行轴封,且有端盖透盖,根据毡圈得直径系列,和选用的轴承7208C,可得=40mm,=80mm。 3-4段:3-4段是过渡段,也用作轴承的轴向定位,则有=47mm,=40mm。 4-5段:4-5段是密封段,=52mm,=40mm。 5-6段:阳转子螺旋线,已设计,=150mm。 6-7段:为密封段,为了加工的方便与4-5段设计相同=52,=30mm。 7-8段:用作轴承轴向定位,与3-4段 =47mm, =40mm。 8-9段:为安装轴承端盖,闷盖,=40mm,=25mm。三维图如4-2所示:4-2 阳转子三维图2. 阴转子 1-2段:安装轴承,选用轴承7207C,=35mm,=25mm。 2-3段:用作轴承轴向定位,=39mm,=40mm。 3-4段:为密封,=42mm,=30mm。 4-5段:为阴转子螺旋线,已设计,=150mm。 5-6段:与3-4段相同, =42mm, =30mm。 6-7段:与2-3段相同, =37mm, =40mm。 7-8段:与1-2段相同, =35mm, =25mm。三维图如4-3所示4-3 阴转子三维图第五章 膨胀机壳体结构设计5.1 吸、排气孔口膨胀机吸、排气孔口的合理形状和位置,是实现气体膨胀过程的必备条件,也是实现膨胀机效率的一个重要因素。为此,在设计吸气孔口是应该满足以下的要求: 吸气孔口应尽量减少对吸气封闭容积的影响; 吸气孔口的位置应能保证齿间容积获得最大程度的吸气,以提高机器的容积利用率。 气体在吸气孔口处及齿间容积内的流动损失要小。即力求孔口面积尽可能的大,气流通道界面变化平缓。5.2 壳体设计膨胀机壳体设计包括对转子外壳和前后机座的设计。转子外壳可根据转子的尺寸来设计,呈横放的8字状,其内径根据转子的外径来设计,长度与转子的长度相同。具体尺寸,减零件图。其形状如图5-1所示。前后机座的设计根据所选择的轴承和轴的尺寸来设计的,其形状如图5-2、5-3所示。图5-1 转子机壳图5-2 前机座图5-3 后机座5.3 机体机体是螺杆膨胀机的主要部件,它由中间部分的汽缸及两端的端盖组成。端盖内有轴封、轴承。只要适当安排转子的螺旋旋向和机体上的吸排气孔口,几乎可以在任何位置安排吸排气通道,对吸排气通道的要求是平滑过渡和流速低,可以减少流动损失。吸气端让吸入气体从底部进入,沿径向进入机体,与吸气类似,排气设在机体的顶部,采用径向排气。机体材料选择为灰口铸铁,牌号为HT200.5.4 轴承选择在螺杆膨胀机中螺杆的受力如图5-4所示,气流对螺齿作用力,可分解成沿轴向的力和径向的力,在密封带螺杆受到径向力,所以轴承将会受到螺杆轴所产生的轴向力和径向力。根据公式:为载荷系数,X,Y分别为径向和轴向动载荷系数,分别为轴承所受到的径向和轴向载荷,可算出轴承所承受的当量载荷。在螺杆膨胀机中,由于轴向力和径向力都不大,故采用滚动轴承。选择角接触球轴承,根据转子螺杆在安装轴承处设计的尺寸,对于阳转子选用轴承型号为7208C,阴转子选用轴承型号为7207C,既能承受轴向载荷,也能承受径向载荷。轴承采用脂润滑。图5-4 螺杆受力图5.5 轴承密封系统的确定由于螺杆膨胀动力机的密封性要求较高,采用图5-5所示结构,密封效果是靠矩形毡圈安装于梯形槽中所产生的径向压力来实现的。图5-56b)可补偿磨损后所产生的径向间隙,且便于更换毡圈。这种密封方式特点是结构简单、廉价,但磨损较快。寿命短。这种密封结构简单,但摩擦较大,只用于滑动速度小于 45ms的地方。与毡圈油封相接触的轴表面如经过抛光且毛毡质量高时,可用到滑动速度达78m/s之处。为了防止膨胀腔的气体通过转子轴向外泄漏,必须在排气段的转子工作段与轴承之间加一个轴封。轴封可选择如图5-5b)所示的机械密封。图5-5 毡圈油封结论本设计中关于螺杆膨胀机的研究只是根据理论知识来进行的,由于知识面的有限,还存在不少问题。我国关于螺杆膨胀机的设计标准还不完善,本课题中是利用国家现有的关于螺杆压缩机的标准GB-T 19410-2008和JB/T2409-1999来进行膨胀机的设计,利用了螺杆压缩的单边不对称销齿圆弧齿型。螺杆膨胀机目前在国内的应用还不是很多,最具代表性的是厦门普科技有限公司的通过螺杆膨胀机利用工厂余热蒸汽进行发电。螺杆膨胀机作为一种绿色环保的动力机械,将本来是作为废物排出的蒸汽转化成动力的来源,既节约了能量又使得能量得以循环利用,其应用前景是很广的,而目前关于这一方面的研究不是很多,如果可以进一步深入研究并行成一套标准就可以大批量的进行生产应用,具有很大的发展以及研究潜力。致谢通过这段时间的辛苦和努力,现在我的毕业设计已经基本完成,这离不开那些在我做毕业设计过程中给予我帮助的同学和老师,其中最感谢我的指导老师张发军老师。在最初我拿到题目的时候是毫无头绪,不知从哪里着手,是张老师给我耐心介绍了课题的内容并且指导着我一步一步的去完成,而且其间我有很多问题不懂去找张老师,老师都不愿其烦的为我解答,让我很是感激。这次毕业设计可以说让我收获颇丰,因为要用到三维软件和二维软件我选择了我们学习过得Pro/E和CAD软件,在作图过程中我将以前学习过得只是都又温习了一遍。这次算是我第一次比较独立的去完成与专业相关的设计任务,由于涉及到的一些只是没有学过,所以阅览了很多书籍,对自己的知识库有了一定的充实,而且学会了如何有效的去找资料。在做设计的过程中,我遇到了很多问题,有几次我都想放弃了,但是我还是咬牙过来了。作为毕业之前的一项学习任务,虽然我做的不够好,但是我已经尽力了。以前习惯了去仿照模板,而这一次我学会了如何去思考问题,还有要敢于去接受新的东西。我衷心感谢老师给予的支持与帮助,我想以后再工作中也应该有那种敢于动脑敢于创新的意识,和面对困难不能妥协的精神。参考文献1王维.螺杆膨胀机内体积膨胀过程与结构参数的关系J,天津城市建设学院学报,1995, 02. 2 魏文荣,杨明友. 螺杆膨胀机在低温余热发电中的应用J,水泥,1995,09 . 3 陈建和,葛洪. 汽液全流螺杆膨胀机发电新技术应用J,节能, 2000,06 . 4 王维. 汽液两相螺杆膨胀机的定熵膨胀功率特性J,热能动力工程, 1995,06 . 5 李汉炎,李学锋,毛润治,胡亮光. 小型太阳能热动力用螺杆膨胀机J,太阳能学报,1994,04. 6 王维.以汽水混合物为工质的螺杆膨胀机工作过程及特性分析J,天津城市建设学院学报, 1995,01. 7 胡亮光,庞风彪,王之安,范文伯,吕灿仁. 中低温能源全流发电螺杆膨胀机的性能及实验研究J,工程热物理学报,1989,04.8汽液全流螺杆膨胀机J.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论