




文档简介
程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 程伟巅峰数学 ChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 官方网站:官方网站: 程伟巅峰数学程伟巅峰数学 20152015 高考数学冲刺备战最强课程高考数学冲刺备战最强课程 专用课程讲义专用课程讲义 第一辑第一辑 “神级结论”秒杀 “神级结论”秒杀 与与 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例一】【典例一】一个几何体的三视图如图所示,则这个几何体的体积等于( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 1 2 122 2 V 3 cm. 【答案】【答案】D 【典例二】【典例二】一个几何体的三视图如图所示(单位:) ,则该几何体的体积为_. 【解析】【解析】由“神级结论一神级结论一”之 可得:V 1 1212 3430 2 3 m. 【答案】【答案】30 【典例三】【典例三】若一个几何体的三视图如图所示,则该几何体的体积是_. 3 1 3 cm 3 1cm 3 2cm 3 2cm m 3 m 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【解析】【解析】由“神级结论一神级结论一”之 可得:V 1 2333 3 2 . 【答案】【答案】3 3 【典例四】【典例四】某几何体的三视图如图所示,则该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得:V 1 28410200 2 . 【答案】【答案】C 【典例五】【典例五】若一个几何体的三视图如图所示,则此几何体的体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得:V 1 21 3114 2 . 【答案】【答案】D 560 3 580 3 200240 11 2 5 9 2 4 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例六典例六】一个几何体的三视图如图所示(单位:),则该几何体的体积为_. 【解析】【解析】由“神级结论一神级结论一”之 可得:1 2 2 114V . 【答案】【答案】4 【典例七典例七】如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和 俯视图都是矩形,则该几何体的体积为_. 【解析】【解析】由“神级结论一神级结论一”之 可得: 3339 3V . 【答案】【答案】9 3 m 3 m 1 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例八】【典例八】一个几何体的三视图如图所示,则该几何体的体积是_. 【解析】【解析】由“神级结论一神级结论一”之 可得:2 3212V . 【答案】【答案】12 【典例九】【典例九】已知某三棱锥的三视图(单位:)如图所示,则该三棱锥的体积是( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 2 131 32 V 3 cm. 【答案】【答案】A 【典例十】【典例十】 已知某三棱锥的三视图 (单位:) 如图所示, 则该三棱锥的体积等于_. cm 3 1cm 3 2cm 3 3cm 3 4cm cm 3 cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 3 121 32 V 3 cm. 【答案】【答案】1 【典例十一】【典例十一】如图,某几何体的正视图(主视图) ,侧视图(左视图)和俯视图分别是等边 三角形,等腰三角形和菱形,则该几何体体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 2 3232 3 32 V . 【答案】【答案】C 【典例十二】【典例十二】已知某个几何体的三视图如下,根据图中标出的尺寸(单位:) ,可得这 个几何体的体积是( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 18000 20 2020 33 V 3 cm. 【答案】【答案】B 4 3 4 2 3 2 cm 3 4000 3 cm 3 8000 3 cm 3 2000cm 3 4000cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例十三典例十三】如图, 一个空间几何体的三视图如图所示, 其中, 主视图中是边长为 的正三角形,俯视图为正六边形,那么该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 2 133 613 342 V . 【答案】【答案】D 【典例十四典例十四】一个几何体的三视图如图所示,则这个几何体的体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 2 8311 12 23 326 V . 【答案】【答案】A ABC2 3 3 2 3 3 2 83 6 823 6 63 6 923 6 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例十五典例十五】一个几何体的三视图如图所示,则这个几何体的体积等于( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 24224 32 V . 【答案】【答案】A 【典例十六典例十六】 设某几何体的三视图如下 (尺寸的长度单位为) 则该几何体的体积为 ( ) . A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 4 324 32 V 3 m. 【答案】【答案】B 46 812 m 3 m 34 56 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例十七典例十七】某空间几何体的三视图如图所示,则此几何体的体积( ) A有最大值 B有最大值 C有最大值 D有最小值 【解析】【解析】由“神级结论一神级结论一”之 可得: 222 112 232 3222 xy Vxyxy .故有最大值. 【答案】【答案】A 【典例十八典例十八】某几何体的三视图如图所示,且该几何体的体积是,则正视图中的的值 是( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 122 32 Vxx .故 3 2 x . 【答案】【答案】C 24 62 2 3 2 x 2 9 2 3 2 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例十九】【典例十九】一个几何体的三视图如图所示,则这个几何体的体积等于_. 【解析】【解析】由“神级结论一神级结论一”之 可得: 1116 3522 323 V . 【答案】【答案】 16 3 【典例二十典例二十】已知某几何体的三视图 (单位:) 如图所示, 则该几何体的体积是 ( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11 6 364 341088100 32 V 3 cm. 【答案】【答案】B cm 3 108cm 3 100cm 3 92cm 3 84cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例二十一】【典例二十一】已知某几何体的三视图如图所示,则该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 113264 4 444 44232 2333 V . 【答案】【答案】A 【典例二十二】【典例二十二】一个几何体的三视图如图所示,则该几何体的体积是( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 111210 2 222 22 14 23233 V . 64 3 32 80 3 8 8 2 3 2 10 3 6 22 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【答案】【答案】B 【典例二十三】【典例二十三】已知某几何体的三视图如图所示,则该几何体的体积等于_. 【解析】【解析】由“神级结论一神级结论一”之 可得: 11132160 4 484 48464 23233 V . 【答案】【答案】 160 3 【典例二十四】【典例二十四】若某几何体的三视图(单位:)如图所示,则此几何体的体积等于 _. 【解析】【解析】由“神级结论一神级结论一”之 可得: 111 4 354 3330624 232 V . 【答案】【答案】24 cm 3 cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例二十五】【典例二十五】一个几何体的三视图如图所示,则该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 11135 3 232232 12 3 23233 V . 【答案】【答案】D 【典例二十六】【典例二十六】一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: 1 =+2= 242 1742244488 17 2 SSS 表侧第三 . 【答案】【答案】C 2 32 5 4 3 3 5 3 3 48 32 8 17 48 8 17 80 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例二十七】【典例二十七】已知一个几何体的三视图如图所示,那么这个几何体的侧面积是( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: = 1 122142S 侧 . 【答案】【答案】C 【典例二十八】【典例二十八】如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几 何体的表面积为( ) A B C D 【解析】【解析】由“神级结论一神级结论一”之 可得: =+2= 22333233306 3SSS 表侧第三 . 【答案】【答案】C 1232 4252 15 3 39 3 30 6 318 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例二十九】【典例二十九】一个几何体的三视图如图所示,则该几何体的表面积为( ) A B C D 【解析】【解析】此例较为特殊,因为底面是空心的底面是空心的,所以计算计算c第三时应注意加上中间圆的周长,时应注意加上中间圆的周长, 计算计算S第三时应注意减去中间圆的面积时应注意减去中间圆的面积,大家记住此特例即可。 由“神级结论一神级结论一”之 可得: 2 =+2= 3+3+4+4+21124 3138SSS 表侧第三 . 【答案】【答案】D 【典例三十】【典例三十】某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A B C D 【解析】【解析】由“神级结论神级结论二二”之 可得: 22 1 =54 +0 =10 2 S 侧1 ; 22 1 =44 +3 =10 2 S 侧2 ; 2 2 18 =414 +=6 5 241 S 侧3 ; 1 =4 5=10 2 SS 底俯 . 382382 3838 28 6 530 6 5 56 12 560 12 5 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 故=10+10+6 5+10=30+6 5S表. 【答案】【答案】B 【典例三十一】【典例三十一】某几何体的三视图如图所示,则该几何体的表面积为( ) A B C D 【解析】【解析】由“神级结论神级结论二二”之 可得: 22 1 =22 +0 =2 2 S 侧1 ; 22 1 =22 +1 = 5 2 S 侧2 ; 2 2 12 =2 22 +=3 22 S 侧3 ; 1 =2 2=2 2 SS 底俯 . 故=2+ 5+3+2=7+ 5S表. 【答案】【答案】A 【典例三十二】【典例三十二】某几何体的三视图如图所示,则其侧面积为( ) A B C D 75 9 45104 5 5 326 2 236 2 623 2 32 2 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【解析】【解析】由“神级结论神级结论一一”之 可得: 22 11 =11 +0 = 22 S 侧1 ; 22 12 =11 +1 = 22 S 侧2 ; 22 3 1 =21 +0 =1 2 S 侧 ; 2 2 16 =21 +2= 22 S 侧4 . 故 1263+ 2+ 6 =+1+= 2222 S侧. 【答案】【答案】A 【典例三十三】【典例三十三】某四棱锥的三视图如图所示,该四棱锥的表面积是( ) A B C D 【解析】【解析】由“神级结论神级结论二二”之 可得: 22 1 =4224 2 2 SSSS 侧1侧2侧3侧4 . 故=44 2+44=16+16 2S 表 . 【答案】【答案】B 32 16 16 2 48 1632 2 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例三十四】【典例三十四】某四面体的三视图如图所示,则该四面体的表面积是_. 【解析】【解析】由“神级结论神级结论一一”之 可得: 22 1 =22 +0 =2 2 S 侧1 ; 22 1 =22 +1 = 5 2 S 侧2 ; 2 2 12 =2 22 +=3 22 S 侧3 ; 故 1 =2+ 5+3+2 2=7+ 5 2 S 表 . 【答案】【答案】7+ 5 【典例三十五】【典例三十五】某几何体的三视图如图所示,则该几何体的体积等于_. 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 2+544=56 2 V . 【答案】【答案】56 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例三十六】【典例三十六】若某空间几何体的三视图如图所示,则该几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 2 12=1 2 V . 【答案】【答案】C 【典例三十七】【典例三十七】某几何体的三视图如右图,其正视图中的曲线部分为半个圆弧,则该几何体 的体积为( ). A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 2 113 2 2136 222 V . 【答案】【答案】C 1 3 2 3 12 3 cm 6323 3 6 2 3 2 2 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例三十八】【典例三十八】一个几何体按比例绘制的三视图(单位:)如图所示,该几何体的体积 为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 17 3 11 11 22 V . 【答案】【答案】C 【典例三十九】【典例三十九】一个空间几何体的三视图如图所示,则该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 284480 2 V . 【答案】【答案】B cm 3 7 3 cm 3 9 2 cm 3 7 2 cm 3 9 4 cm 6080 100120 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例四十典例四十】已知一个几何体的三视图如图所示,则该几何体的体积为_. 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 4 4 55 120V . 【答案】【答案】120 【典例四十一】【典例四十一】若一个几何体的三视图如图所示,则这个几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 2333 3 2 V . 【答案】【答案】B 3 cm 33 3 3 3 4 9 3 4 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例四十二】【典例四十二】若一个几何体的三视图如图所示,则该几何体的体积是_. 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 4 24 1318 2 V . 【答案】【答案】18 【典例四十三】【典例四十三】如图,若一个空间几何体的三视图中,直角三角形的直角边长均为 ,则该 几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 11 1 11 33 V . 【答案】【答案】B 1 1 2 1 3 1 1 4 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例四十四】【典例四十四】如图 1,一个“半圆锥”的主视图是边长为的正三角形,左视图是直角三 角形,俯视图是半圆及其圆心,这个几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 2 113 13 326 V . 【答案】【答案】B 【典例四十五】【典例四十五】 一个棱锥的三视图如图 (尺寸的长度单位为) , 则该棱锥的体积是 (单位: ) ( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 114 2 22 323 V . 【答案】【答案】D 2 3 3 3 6 2 33 m 3 m 42 646 2 3 4 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例四十六】【典例四十六】如果一个几何体的三视图如图所示,则此几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 2 1 3412 3 V. 【答案】【答案】A 【典例四十七】【典例四十七】 如图, 一个空间几何体的正视图、 侧视图、 俯视图为全等的等腰直角三角形, 如果直角三角形的直角边长为,那么这个几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 114 2 22 323 V . 【答案】【答案】C 129 63 2 1 3 2 3 4 3 2 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例四十八典例四十八】已知几何体的三视图如图,则该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 14 2 2 22 33 V . 【答案】【答案】C 【典例四十九典例四十九】一个空间几何体的三视图及部分数据如图所示(单位:),则这个几何 体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 2 1 3412 3 V. 【答案】【答案】B 4 3 4 4 2 3 4 3 3 cm 3 9 cm 3 12 cm 3 15 cm 3 24 cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例五十典例五十】已知几何体的三视图如图所示,可得这个几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 3 326 3 V . 【答案】【答案】B 【典例五十一典例五十一】已知某几何体的三视图如图所示,根据图中标注的尺寸(单位:),可 得该几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 114 2 22 323 V . 【答案】【答案】C 46 1218 cm 3 1 3 cm 3 2 3 cm 3 4 3 cm 3 8 3 cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例五十二典例五十二】若某空间几何体的三视图如图所示,则该几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 11 12222 32 V . 【答案】【答案】C 【典例五十三典例五十三】 一个几何体的正视图、 侧视图、 俯视图如图所示, 则该几何体的体积为 ( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 2 114 22 323 V . 【答案】【答案】B 2 3 4 3 26 2 3 4 3 2 8 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例五十四典例五十四】一个几何体的三视图如图所示,则该几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 12 221 33 V . 【答案】【答案】A 【典例五十五典例五十五】一个简单多面体的三视图如图所示,其主视图与左视图是边长为 的正三角 形,俯视图轮廓为正方形,则其体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 133 1 1 326 V . 【答案】【答案】C 2 3 1 3 21 1 1 6 2 6 3 6 3 12 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例五十六典例五十六】已知空间几何体的三视图如图所示,则该几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 18 2 22 33 V . 【答案】【答案】B 【典例五十七典例五十七】如图,一个简单几何体的三视图其主视图与俯视图分别是边长的正三角 形和正方形,则其体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 14 3 2 23 33 V . 【答案】【答案】C 4 3 8 3 48 2 3 6 4 2 3 4 3 3 8 3 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例五十八典例五十八】已知某几何体的三视图如图所示(单位:),其中正视图、侧视图都是 等腰直角三角形,则这个几何体的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 116 2 42 33 V . 【答案】【答案】B 【典例五十九典例五十九】 设某几何体的三视图 (尺寸的长度单位为) , 则该几何体的体积为 ( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 11 3 424 32 V . 【答案】【答案】C cm 3 8 3 cm 3 16 3 cm 3 16 2 3 cm 3 32 3 cm m 12 8 3 48 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例六十典例六十】一个空间几何体的主视图、左视图、俯视图均为直角三角形,边长如图所示, 那么这个几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 11 1 231 32 V . 【答案】【答案】A 【典例六十一典例六十一】已知某个三棱锥的三视图如图,根据图中标出的尺寸(单位:),则这 个三棱锥的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 114 2 22 323 V . 【答案】【答案】C 12 34 cm 3 1 3 cm 3 2 3 cm 3 4 3 cm 3 8 3 cm 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例六十二典例六十二】一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是 ( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 2 234 3 V . 【答案】【答案】D 【典例六十三】【典例六十三】一个空间几何体的正视图、左视图、俯视图为全等的、直角边为 的等腰直 角三角形(如图) ,那么这个几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 111 1 11 326 V . 12 34 1 1 1 2 1 3 1 6 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【答案】【答案】D 【典例六十四典例六十四】一个三棱锥的三视图如图所示,则该三棱锥的体积是( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 114 2 22 323 V . 【答案】【答案】B 【典例六十五典例六十五】已知某几何体的三视图如右图所示,根据图中的数据,则该几何体的体积是 ( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 1 4 238 3 V . 【答案】【答案】B 4 4 3 8 3 8 68 1824 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例六十六典例六十六】若某多面体的三视图 (单位:) 如图所示, 则此多面体的体积是 ( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 11 3 222 32 V . 【答案】【答案】A 【典例六十七典例六十七】一个几何体的三视图及部分数据如图所示,侧视图为等腰三角形,俯视图为 正方形,则这个几何体的体积等于( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 111 1 12 323 V . 【答案】【答案】A cm 3 2cm 3 4cm 3 6cm 3 12cm 1 3 2 3 15 6 62 24 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 中国高考数学、物理创新教学与研究第一人中国高考数学、物理创新教学与研究第一人 程伟巅峰数学程伟巅峰数学 ChengWeiTopMathsChengWeiTopMaths 妙至毫颠的技巧演绎,酣畅淋漓的激情教学。妙至毫颠的技巧演绎,酣畅淋漓的激情教学。 【典例六十八典例六十八】如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角 形,如果直角三角形的斜边长为,那么这个几何体的体积为( ) A B C D 【解析】【解析】由“神级结论神级结论一一”之 可得: 114 2 22 323 V . 【答案】【答案】C 【典例六十九典例六十
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省扬州市高邮市重点中学2024-2025学年初三下第二次月考试题含解析
- 家居色彩搭配培训课件
- 灭火器使用方法及注意事项培训
- 2025混凝土承包合同简易范本
- 2025紫菜软件ERP实施服务合同
- 2025年签订买卖合同需留意的法律问题
- 2025存量房居间买卖合同
- 2025国内域名转让合同范本
- 2025智能音箱采购合同
- 2025手游代理合同范文
- 资产分红合同协议
- 中国高职院校毕业生薪酬报告(2024年度)
- 2025年福建泉州交发集团(第一批)校园招聘72人笔试参考题库附带答案详解
- 《建筑与市政工程施工现场临时用电安全技术标准》JGJT46-2024知识培训
- 中国心力衰竭诊断和治疗指南2024解读(完整版)
- (正式版)JBT 7248-2024 阀门用低温钢铸件技术规范
- 工程勘察设计收费标准
- 混凝土模板支撑工程专项施工方案(140页)
- 缠论缠中说禅秋叶正红三级联立分析报告操作系统
- 钢筋材料进场送检台账
- westfalia分油机中文说明书(共194页)
评论
0/150
提交评论