




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考资源网() 您身边的高考专家状元题本高考数学压轴题系列训练六1 如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.2设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. ()确定的取值范围,并求直线AB的方程;()试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由. 3已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足 ()证明()试确定一个正整数N,使得当时,对任意b0,都有 4如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程; ()若点P为l上的动点,求F1PF2最大值5已知函数和的图象关于原点对称,且 ()求函数的解析式; ()解不等式; ()若在上是增函数,求实数的取值范围6(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分. 对定义域分别是Df、Dg的函数y=f(x) 、y=g(x), f(x)g(x) 当xDf且xDg 规定: 函数h(x)= f(x) 当xDf且xDg g(x) 当xDf且xDg(1) 若函数f(x)=,g(x)=x2,xR,写出函数h(x)的解析式;(2) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+), 其中是常数,且0,请设计一个定义域为R的函数y=f(x),及一个的值,使得h(x)=cos4x,并予以证明.2010年高考数学压轴题系列训练含答案及解析详解六1 如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.解:(1)设切点A、B坐标分别为,切线AP的方程为: 切线BP的方程为:解得P点的坐标为:所以APB的重心G的坐标为 ,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: (2)方法1:因为由于P点在抛物线外,则同理有AFP=PFB.方法2:当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得AFP=PFB.当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PFB.2设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. ()确定的取值范围,并求直线AB的方程;()试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由. ()解法1:依题意,可设直线AB的方程为,整理得 设是方程的两个不同的根, 且由N(1,3)是线段AB的中点,得 解得k=1,代入得,的取值范围是(12,+). 于是,直线AB的方程为 解法2:设则有 依题意,N(1,3)是AB的中点, 又由N(1,3)在椭圆内,的取值范围是(12,+).直线AB的方程为y3=(x1),即x+y4=0. ()解法1:CD垂直平分AB,直线CD的方程为y3=x1,即xy+2=0,代入椭圆方程,整理得 又设CD的中点为是方程的两根,于是由弦长公式可得 将直线AB的方程x+y4=0,代入椭圆方程得 同理可得 当时,假设存在12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为 于是,由、式和勾股定理可得故当12时,A、B、C、D四点匀在以M为圆心,为半径的圆上. (注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆ACD为直角三角形,A为直角|AN|2=|CN|DN|,即 由式知,式左边由和知,式右边式成立,即A、B、C、D四点共圆.解法2:由()解法1及12,CD垂直平分AB, 直线CD方程为,代入椭圆方程,整理得 将直线AB的方程x+y4=0,代入椭圆方程,整理得 解和式可得 不妨设计算可得,A在以CD为直径的圆上.又B为A关于CD的对称点,A、B、C、D四点共圆.(注:也可用勾股定理证明ACAD)3已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足 ()证明()试确定一个正整数N,使得当时,对任意b0,都有 ()证法1:当即 于是有 所有不等式两边相加可得 由已知不等式知,当n3时有,证法2:设,首先利用数学归纳法证不等式 (i)当n=3时, 由 知不等式成立.(ii)假设当n=k(k3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得 ()则有故取N=1024,可使当nN时,都有4如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程; ()若点P为l上的动点,求F1PF2最大值本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:()设椭圆方程为,半焦距为,则()5已知函数和的图象关于原点对称,且 ()求函数的解析式; ()解不等式; ()若在上是增函数,求实数的取值范围解:()设函数的图象上任意一点关于原点的对称点为,则点在函数的图象上()由当时,此时不等式无解.当时,解得.因此,原不等式的解集为.()6(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分. 对定义域分别是Df、Dg的函数y=f(x) 、y=g(x), f(x)g(x) 当xDf且xDg 规定: 函数h(x)= f(x) 当xDf且xDg g(x) 当xDf且xDg(3) 若函数f(x)=,g(x)=x2,xR,写出函数h(x)的解析式;(4) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+), 其中是常数,且0,请设计一个定义域为R的函数y=f(x),及一个的值,使得h(x)=cos4x,并予以证明. 解 (1)h(x)= x(-,1)(1,+) 1 x=1 (2) 当x1时, h(x)= =x-1+2, 若x1时, 则h(x)4,其中等号当x=2时成立 若x1时, 则h(x) 0,其中等号当x=0时成立函数h(x)的值域是(-,0 14,+)(3)令 f(x)=sin2x+cos2x,=则g(x)=f(x+)= sin2(x+)+cos2(x+)=cos2x-sin2x,于是h(x)= f(x)f(x+)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, =,g(x)=f(x+)= 1+sin2(x+)=1-sin2x,于是h(x)= f(x)f(x+)= (1+sin2x)( 1-sin2x)=cos4x.7(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分. 在直角坐标平面中,已知点P1(1,2),P2(2,22),Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, , AN为AN-1关于点PN的对称点. (1)求向量的坐标; (2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x(0,3时,f(x)=lgx.求以曲线C为图象的函数在(1,4上的解析式; (3)对任意偶数n,用n表示向量的坐标.解(1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y), A1为P2关于点的对称点A2的坐标为(2+x,4+y), =2,4. (2) =2,4,f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x(-2,1时,g(x)=lg(x+2)-4.于是,当x(1,4时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 几分包合同范本
- 农村耕地流转合同范本
- 产品免责合同范本
- 仓储临时合同范本
- 化妆产品合同范本
- 信息验收合同范例
- 书法装裱售卖合同范本
- 农村集体资源招租合同范本
- 免除追偿工伤合同范本
- 兄弟篮球合同范本
- 2024年-ITSS新标准培训学习材料
- 第2课《让美德照亮幸福人生》第2框《做守家庭美德的好成员》-【中职专用】《职业道德与法治》同步课堂课件
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 2024届广东省深圳市中考物理模拟试卷(一模)(附答案)
- 前庭功能锻炼科普知识讲座
- 供应链战略布局与区域拓展案例
- 上海话培训课件
- 注塑车间绩效考核方案
- 初中英语阅读理解专项练习26篇(含答案)
- 诵读经典传承文明课件
- 高中数学选择性必修3 教材习题答案
评论
0/150
提交评论