




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3数学归纳法预习课本P9295,思考并完成下列问题(1)数学归纳法的概念是什么?适用范围是什么?(2)数学归纳法的证题步骤是什么?新知初探1数学归纳法的定义一般地,证明一个与正整数n有关的命题,可按下列步骤进行只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立这种证明方法叫做数学归纳法2数学归纳法的框图表示点睛数学归纳法证题的三个关键点(1)验证是基础数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点(2)递推是关键数学归纳法的实质在于递推,所以从“k”到“k1”的过程中,要正确分析式子项数的变化关键是弄清等式两边的构成规律,弄清由nk到nk1时,等式的两边会增加多少项,增加怎样的项(3)利用假设是核心在第二步证明nk1成立时,一定要利用归纳假设,即必须把归纳假设“nk时命题成立”作为条件来导出“nk1”,在书写f(k1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心不用归纳假设的证明就不是数学归纳法小试身手1判断(正确的打“”,错误的打“”)(1)与正整数n有关的数学命题的证明只能用数学归纳法()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可()答案:(1)(2)(3)2如果命题p(n)对所有正偶数n都成立,则用数学归纳法证明时须先证n_成立答案:23已知f(n)1(nN*),计算得f(2),f(4)2,f(8),f(16)3,f(32),由此推测,当n2时,有_答案:f(2n)用数学归纳法证明等式典例用数学归纳法证明:(nN*)证明(1)当n1时,成立(2)假设当nk(nN*)时等式成立,即有,则当nk1时,即当nk1时等式也成立由(1)(2)可得对于任意的nN*等式都成立用数学归纳法证明恒等式应注意的三点用数学归纳法证明恒等式时,一是弄清n取第一个值n0时等式两端项的情况;二是弄清从nk到nk1等式两端增加了哪些项,减少了哪些项;三是证明nk1时结论也成立,要设法将待证式与归纳假设建立联系,并朝nk1证明目标的表达式变形活学活用求证:1(nN*)证明:(1)当n1时,左边1,右边,左边右边(2)假设nk(kN*)时等式成立,即1,则当nk1时,.即当nk1时,等式也成立综合(1),(2)可知,对一切nN*,等式成立用数学归纳法证明不等式典例已知nN*,n2,求证:1 .证明(1)当n3时,左边1,右边2,左边右边,不等式成立(2)假设当nk(kN*,k3)时,不等式成立,即1.当nk1时,1 .因为 ,所以1 .所以当nk1时,不等式也成立由(1),(2)知对一切nN*,n2,不等式恒成立一题多变1变条件,变设问将本题中所要证明的不等式改为:(n2,nN*),如何证明?证明:(1)当n2时,不等式成立(2)假设当nk(k2,kN*)时,命题成立即.则当nk1时,3.所以当nk1时,不等式也成立由(1),(2)可知,原不等式对一切n2,nN*都成立2变条件,变设问将本题中所要证明的不等式改为:(n2,nN*),如何证明?证明:(1)当n2时,左边1,右边.左边右边,所以原不等式成立(2)假设当nk(k2,kN*)时不等式成立,即.则当nk1时,左边.所以,当nk1时不等式也成立由(1)和(2)可知,对一切n2,nN*不等式都成立用数学归纳法证明不等式的四个关键(1)验证第一个n的值时,要注意n0不一定为1,若nk(k为正整数),则n0k1.(2)证明不等式的第二步中,从nk到nk1的推导过程中,一定要用到归纳假设,不应用归纳假设的证明不是数学归纳法,因为缺少归纳假设(3)用数学归纳法证明与n有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n取前n个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n值开始都成立的结论,常用数学归纳法证明(4)用数学归纳法证明不等式的关键是由nk时成立得nk1时成立,主要方法有比较法、分析法、综合法、放缩法等 归纳猜想证明典例考察下列各式2213441345681355678161357你能做出什么一般性的猜想?能证明你的猜想吗?解由题意得,221,34413,4568135,5678161357,猜想:(n1)(n2)(n3)2n2n135(2n1),下面利用数学归纳法进行证明:证明:(1)当n1时,显然成立;(2)假设当nk时等式成立,即(k1)(k2)(k3)2k2k135(2k1),那么当nk1时,(k11)(k12)(k13)2(k1)(k1)(k2)2k(2k1)22k135(2k1)(2k1)22k1135(2k1)2k11352(k1)1所以当nk1时等式成立根据(1)(2)可知对任意正整数等式均成立(1)“归纳猜想证明”的一般环节(2)“归纳猜想证明”的主要题型已知数列的递推公式,求通项或前n项和由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在给出一些简单的命题(n1,2,3,),猜想并证明对任意正整数n都成立的一般性命题活学活用数列an中,a11,a2,且an1(n2),求a3,a4,猜想an的表达式,并加以证明解:a2,且an1(n2),a3,a4.猜想:an(nN*)下面用数学归纳法证明猜想正确(1)当n1,2易知猜想正确(2)假设当nk(k2,kN*)时猜想正确,即ak.当nk1时,ak1nk1时猜想也正确由(1)(2)可知,猜想对任意nN*都正确层级一学业水平达标1设Sk,则Sk1为()ASkBSkCSk DSk解析:选C因式子右边各分数的分母是连续正整数,则由Sk,得Sk1.由,得Sk1Sk.故Sk1Sk.2利用数学归纳法证明不等式1n(n2,nN*)的过程中,由nk变到nk1时,左边增加了()A1项 Bk项C2k1项 D2k项解析:选D当nk时,不等式左边的最后一项为,而当nk1时,最后一项为,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项3一个与正整数n有关的命题,当n2时命题成立,且由nk 时命题成立可以推得nk2时命题也成立,则()A该命题对于n2的自然数n都成立B该命题对于所有的正偶数都成立C该命题何时成立与k取值无关D以上答案都不对解析:选B由nk时命题成立可推出nk2时命题也成立,又n2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.4对于不等式 n1(nN*),某同学用数学归纳法的证明过程如下:(1)当n1时, 11,不等式成立(2)假设当nk(kN*)时,不等式成立,即 k1,则当nk1时,(k1)1,nk1时,不等式成立,则上述证法()A过程全部正确Bn1验得不正确C归纳假设不正确D从nk到nk1的推理不正确解析:选D在nk1时,没有应用nk时的归纳假设,故选D.5设f(n)5n23n11(nN*),若f(n)能被m(mN*)整除,则m的最大值为()A2 B4C8 D16解析:选Cf(1)8,f(2)32,f(3)144818,猜想m的最大值为8.6用数学归纳法证明“对于足够大的自然数n,总有2nn3”时,验证第一步不等式成立所取的第一个值n0最小应当是_解析:2101 024103,2951293,n0最小应为10.答案:107用数学归纳法证明,假设nk时,不等式成立,则当nk1时,应推证的目标不等式是_解析:观察不等式中分母的变化便知答案:8对任意nN*,34n2a2n1都能被14整除,则最小的自然数a_.解析:当n1时,36a3能被14整除的数为a3或5;当a3且n2时,31035不能被14整除,故a5.答案:59已知nN*,求证122232(2n1)(2n)22n(2n1)2n(n1)(4n3)证明:(1)当n1时,左边41814127右边(2)假设当nk(kN*,k1)时成立,即122232(2k1)(2k)22k(2k1)2k(k1)(4k3)则当nk1时,122232(2k1)(2k)22k(2k1)2(2k1)(2k2)2(2k2)(2k3)2k(k1)(4k3)(2k2)(2k1)(2k2)(2k3)2k(k1)(4k3)2(k1)(6k7)(k1)(k2)(4k7)(k1)(k1)14(k1)3,即当nk1时成立由(1)(2)可知,对一切nN*结论成立10用数学归纳法证明11n(nN*)证明:(1)当n1时,1,命题成立(2)假设当nk(kN*)时命题成立,即11k,则当nk1时,112k1.又1k2k(k1),即nk1时,命题成立由(1)和(2)可知,命题对所有nN*都成立层级二应试能力达标1.凸n边形有f(n)条对角线,则凸n1边形对角线的条数f(n1)为()Af(n)n1Bf(n)nCf(n)n1 Df(n)n2解析:选C增加一个顶点,就增加n13条对角线,另外原来的一边也变成了对角线,故f(n1)f(n)1n13f(n)n1.故应选C.2设f(n)1(nN*),那么f(n1)f(n)等于()A. B.C. D.解析:选Df(n1)f(n).3设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k1)与f(k)的关系是()Af(k1)f(k)k1Bf(k1)f(k)k1Cf(k1)f(k)kDf(k1)f(k)k2解析:选C当nk1时,任取其中1条直线记为l,则除l外的其他k条直线的交点的个数为f(k),因为已知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交(有k个交点);又因为任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的f(k)个交点也两两不相同,从而nk1时交点的个数是f(k)kf(k1)4若命题A(n)(nN*)nk(kN*)时命题成立,则有nk1时命题成立现知命题对nn0(n0N*)时命题成立,则有()A命题对所有正整数都成立B命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D以上说法都不正确解析:选C由题意知nn0时命题成立能推出nn01时命题成立,由nn01时命题成立,又推出nn02时命题也成立,所以对大于或等于n0的正整数命题都成立,而对小于n0的正整数命题是否成立不确定5用数学归纳法证明1aa2an1(nN*,a1),在验证n1成立时,左边所得的项为_解析:当n1时,n12,所以左边1aa2.答案:1aa26用数学归纳法证明12222n12n1(nN*)的过程如下:当n1时,左边201,右边2111,等式成立假设nk(k1,且kN*)时,等式成立,即12222k12k1.则当nk1时,12222k12k2k11,所以当nk1时,等式也成立由知,对任意nN*,等式成立上述证明中的错误是_解析:由证明过程知,在证从nk到nk1时,直接用的等比数列前n项和公式,没有用上归纳假设,因此证明是错误的答案:没有用归纳假设7平面内有n(nN*)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2n2部分证明:(1)当n1时,n2n22,即一个圆把平面分成两部分,故结论成立(2)假设当nk(k1,kN*)时命题成立,即k个圆把平面分成k2k2部分则当nk1时,这k1个圆中的k个圆把平面分成k2k2个部分,第k1个圆被前k个圆分成2k条弧,这2k条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k个部分,故k1个圆把平面分成k2k22k(k1)2(k1)2部分,即nk1时命题也成立综上所述,对一切nN*,命题都成立8已知某数列的第一项为1,并且对所有的自然数n2,数列的前n项之积为n2.(1)写出这个数列的前5项;(2)写出这个数列的通项公式并加以证明解:(1)已知a11,由题意,得a1a222,a222.a1a2a332,a3.同理,可得a4,a5.因此这个数列的前5项分别为1,4,.(2)观察这个数列的前5项,猜测数列的通项公式应为:an下面用数学归纳法证明当n2时,an.当n2时,a222,结论成立假设当nk(k2,kN*)时,结论成立,即ak.a1a2ak1(k1)2,a1a2ak1akak1(k1)2,ak1.这就是说当nk1时,结论也成立根据可知,当n2时,这个数列的通项公式是an.这个数列的通项公式为an (时间: 120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1根据偶函数定义可推得“函数f(x)x2在R上是偶函数”的推理过程是()A归纳推理B类比推理C演绎推理 D非以上答案解析:选C根据演绎推理的定义知,推理过程是演绎推理,故选C.2自然数是整数,4是自然数,所以4是整数以上三段论推理()A正确B推理形式不正确C两个“自然数”概念不一致D“两个整数”概念不一致解析:选A三段论中的大前提、小前提及推理形式都是正确的3设a,b,c都是非零实数,则关于a,bc,ac,b四个数,有以下说法:四个数可能都是正数;四个数可能都是负数;四个数中既有正数又有负数则说法中正确的个数有()A0 B1C2 D3解析:选B可用反证法推出,不正确,因此正确4下列推理正确的是()A把a(bc)与loga(xy)类比,则有loga(xy)logaxlogayB把a(bc)与sin(xy)类比,则有sin(xy)sin xsin yC把a(bc)与axy类比,则有axyaxayD把(ab)c与(xy)z类比,则有(xy)zx(yz)解析:选D(xy)zx(yz)是乘法的结合律,正确5已知f(x1),f(1)1(xN*),猜想f(x)的表达式为()Af(x) Bf(x)Cf(x) Df(x)解析:选Bf(2),f(3),f(4),猜想f(x).6求证:.证明:因为和都是正数,所以为了证明,只需证明()2()2,展开得525,即20,此式显然成立,所以不等式成立上述证明过程应用了()A综合法B分析法C综合法、分析法配合使用D间接证法解析:选B证明过程中的“为了证明”,“只需证明”这样的语句是分析法所特有的,是分析法的证明模式7已知bn为等比数列,b52,则b1b2b3b929.若an为等差数列,a52,则an的类似结论为()Aa1a2a3a929 Ba1a2a929Ca1a2a929 Da1a2a929解析:选D由等差数列性质,有a1a9a2a82a5.易知D成立8若数列an是等比数列,则数列anan1()A一定是等比数列B一定是等差数列C可能是等比数列也可能是等差数列D一定不是等比数列解析:选C设等比数列an的公比为q,则anan1an(1q)当q1时,anan1一定是等比数列;当q1时,anan10,此时为等差数列9已知abc0,则abbcca的值()A大于0 B小于0C不小于0 D不大于0解析:选D法一:abc0,a2b2c22ab2ac2bc0,abacbc0.法二:令c0,若b0,则abbcac0,否则a,b异号,abbcacab0,排除A、B、C,选D.10已知123332433n3n13n(nab)c对一切nN*都成立,那么a,b,c的值为()Aa,bc BabcCa0,bc D不存在这样的a,b,c解析:选A令n1,2,3,得所以a,bc.11已知数列an的前n项和Sn,且a11,Snn2an(nN*),可归纳猜想出Sn的表达式为()ASn BSnCSn DSn解析:选A由a11,得a1a222a2,a2,S2;又1a332a3,a3,S3;又1a416a4,得a4,S4.由S1,S2,S3,S4可以猜想Sn.12设函数f(x)定义如下表,数列xn满足x05,且对任意的自然数均有xn1f(xn),则x2 016()x12345f(x)41352A.1 B2C4 D5解析:选Dx1f(x0)f(5)2,x2f(2)1,x3f(1)4,x4f(4)5,x5f(5)2,数列xn是周期为4的数列,所以x2 016x45,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分把答案填在题中的横线上)13已知x,yR,且xy0,b0,mlg,nlg,则m,n的大小关系是_解析:ab00ab2ab()2()2lglg .答案:mn15已知 2, 3, 4, 6,a,b均为正实数,由以上规律可推测出a,b的值,则ab_.解析:由题意归纳推理得 6,b62135,a6.ab63541.答案:4116现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为_解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为.答案:三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)用综合法或分析法证明:(1)如果a,b0,则lg ;(2)622.证明:(1)当a,b0时,有,lglg,lglg ab.(2)要证 22,只要证()2(22)2,即22,这是显然成立的,所以,原不等式成立18(本小题满分12分)若a10,a11,an1(n1,2,)(1)求证:an1an;(2)令a1,写出a2,a3,a4,a5的值,观察并归纳出这个数列的通项公式an(不要求证明)解:(1)证明:若an1an,即an,解得an0或1.从而anan1a2a10或1,这与题设a10,a11相矛盾,所以an1an不成立故an1an成立(2)由题意得a1,a2,a3,a4,a5,由此猜想:an.19(本小题满分12分)下列推理是否正确?若不正确,指出错误之处(1)求证:四边形的内角和等于360.证明:设四边形ABCD是矩形,则它的四个角都是直角,有ABCD90909090360,所以四边形的内角和为360.(2)已知 和 都是无理数,试证:也是无理数证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以必是无理数(3)已知实数m满足不等式(2m1)(m2)0,用反证法证明:关于x的方程x22x5m20无实根证明:假设方程x22x5m20有实根由已知实数m满足不等式(2m1)(m2)0,解得2m,而关于x的方程x22x5m20的判别式4(m24),2m,m24,0,即关于x的方程x22x5m20无实根解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形(2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法20(本小题满分12分)等差数列an的前n项和为Sn,a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030化妆品行业行业风险投资发展分析及投资融资策略研究报告
- 2025-2030动漫产业园区定位规划及招商策略咨询报告
- 2025-2030全球及中国美式橄榄球接球手套行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国工业自动化中的边缘计算行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030中国色拉油行业发展趋势与前景展望战略研究报告
- 2025-2030年中国书支架行业深度研究分析报告
- 2025-2030年中国气流纺棉条行业深度研究分析报告
- 二零二五版出租房屋用电安全合同范例
- 股权收购意向合同书范例
- 二零二五版股份转让的合同范例
- 施工质量奖惩考核实施细则
- 杭州2025年浙江杭州余杭区余杭街道招聘编外劳务派遣人员25人笔试历年参考题库附带答案详解
- 2025年入团考试练习试题(100题)附答案
- (二模)温州市2025届高三第二次适应性考试地理试卷(含答案)
- (一模)南京市、盐城市2025届高三年级第一次模拟考试语文试卷
- 河南省安阳市滑县2024-2025学年九年级下学期3月月考英语试题(原卷版+解析版)
- 装载机基础知识
- 烟台东方威思顿电气有限公司2025届校园招聘笔试参考题库附带答案详解
- 2025年邮政社招笔试试题及答案
- 2025年子宫肌瘤临床路径与治疗指南
- 婴幼儿生活照护 课件 6行动手册单元六饮水活动照护
评论
0/150
提交评论