土木工程外文翻译---钢筋混凝土填充框架结构对拆除两个相邻的柱的响应.doc_第1页
土木工程外文翻译---钢筋混凝土填充框架结构对拆除两个相邻的柱的响应.doc_第2页
土木工程外文翻译---钢筋混凝土填充框架结构对拆除两个相邻的柱的响应.doc_第3页
土木工程外文翻译---钢筋混凝土填充框架结构对拆除两个相邻的柱的响应.doc_第4页
土木工程外文翻译---钢筋混凝土填充框架结构对拆除两个相邻的柱的响应.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科毕业设计外文文献及译文文献、资料题目:a comparative study of various commercially available programs in slope stability analysis文献、资料来源:computers and geotechnics文献、资料发表(出版)日期:2008.8.9院 (部):专 业:班 级:姓 名:学 号:指导教师:翻译日期:山东建筑大学毕业设计外文文献及翻译附件一,外文翻译原文及译文1,文献原文:response of a reinforced concrete infilled-frame structure to removal of two adjacent columnsmehrdad sasani_northeastern university, 400 snell engineering center, boston, ma 02115, united statesreceived 27 june 2007; received in revised form 26 december 2007; accepted 24 january 2008available online 19 march 2008abstractthe response of hotel san diego, a six-story reinforced concrete infilled-frame structure, is evaluated following the simultaneous removal of two adjacent exterior columns. analytical models of the structure using the finite element method as well as the applied element method are used to calculate global and local deformations. the analytical results show good agreement with experimental data. the structure resisted progressive collapse with a measured maximum vertical displacement of only one quarter of an inch (6.4 mm). deformation propagation over the height of the structure and the dynamic load redistribution following the column removal are experimentally and analytically evaluated and described. the difference between axial and flexural wave propagations is discussed. three-dimensional vierendeel (frame) action of the transverse and longitudinal frames with the participation of infill walls is identified as the major mechanism for redistribution of loads in the structure. the effects of two potential brittle modes of failure (fracture of beam sections without tensile reinforcement and reinforcing bar pull out) are described. the response of the structure due to additional gravity loads and in the absence of infill walls is analytically evaluated. c 2008 elsevier ltd. all rights reserved.keywords: progressive collapse; load redistribution; load resistance; dynamic response; nonlinear analysis; brittle failure1. introductionas part of mitigation programs to reduce the likelihood of mass casualties following local damage in structures, the general services administration 1 and the department of defense 2 developed regulations to evaluate progressive collapse resistance of structures. asce/sei 7 3 defines progressive collapse as the spread of an initial local failure from element to element eventually resulting in collapse of an entire structure or a disproportionately large part of it. following the approaches proposed by ellingwood and leyendecker 4, asce/sei 7 3 defines two general methods for structural design of buildings to mitigate damage due to progressive collapse: indirect and direct design methods. general building codes and standards 3,5 use indirect design by increasing overall integrity of structures. indirect design is also used in dod 2. although the indirect design method can reduce the risk of progressive collapse 6,7 estimation ofpost-failure performance of structures designed based on such a method is not readily possible. one approach based on direct design methods to evaluate progressive collapse of structures is to study the effects of instantaneous removal of load-bearing elements, such as columns. gsa 1 and dod 2 regulations require removal of one load bearing element. these regulations are meant to evaluate general integrity of structures and their capacity of redistributing the loads following severe damage to only one element. while such an approach provides insight as to the extent to which the structures are susceptible to progressive collapse, in reality, the initial damage can affect more than just one column. in this study, using analytical results that are verified against experimental data, the progressive collapse resistance of the hotel san diego is evaluated, following the simultaneous explosion (sudden removal) of two adjacent columns, one of which was a corner column. in order to explode the columns, explosives were inserted into predrilled holes in the columns. the columns were then well wrapped with a few layers of protective materials. therefore, neither air blast nor flying fragments affected the structure.2. building characteristicshotel san diego was constructed in 1914 with a south annex added in 1924. the annex included two separate buildings. fig. 1 shows a south view of the hotel. note that in the picture, the first and third stories of the hotel are covered with black fabric. the six story hotel had a non-ductile reinforced concrete (rc) frame structure with hollow clay tile exterior infill walls. the infills in the annex consisted of two wythes (layers) of clay tiles with a total thickness of about 8 in (203 mm). the height of the first floor was about 190800 (6.00 m). the height of other floors and that of the top floor were 100600 (3.20 m) and 1601000 (5.13 m), respectively. fig. 2 shows the second floor of one of the annex buildings. fig. 3 shows a typical plan of this building, whose response following the simultaneous removal (explosion) of columns a2 and a3 in the first (ground) floor is evaluated in this paper. the floor system consisted of one-way joists running in the longitudinal direction (northsouth), as shown in fig. 3. based on compression tests of two concrete samples, the average concrete compressive strength was estimated at about 4500 psi (31 mpa) for a standard concrete cylinder. the modulus of elasticity of concrete was estimated at 3820 ksi (26 300 mpa) 5. also, based on tension tests of two steel samples having 1/2 in (12.7 mm) square sections, the yield and ultimate tensile strengths were found to be 62 ksi (427 mpa) and 87 ksi (600 mpa), respectively. the steel ultimate tensile strain was measured at 0.17. the modulus of elasticity of steel was set equal to 29 000 ksi (200 000 mpa). the building was scheduled to be demolished by implosion. as part of the demolition process, the infill walls were removed from the first and third floors. there was no live load in the building. all nonstructural elements including partitions, plumbing, and furniture were removed prior to implosion. only beams, columns, joist floor and infill walls on the peripheralbeams were present.3. sensorsconcrete and steel strain gages were used to measure changes in strains of beams and columns. linear potentiometers were used to measure global and local deformations. the concrete strain gages were 3.5 in (90 mm) long having a maximum strain limit of 0.02. the steel strain gages could measure up to a strain of 0.20. the strain gages could operate up to a several hundred khz sampling rate. the sampling rate used in the experiment was 1000 hz. potentiometers were used to capture rotation (integral of curvature over a length) of the beam end regions and global displacement in the building, as described later. the potentiometers had a resolution of about 0.0004 in (0.01 mm) and a maximum operational speed of about 40 in/s (1.0 m/s), while the maximum recorded speed in the experiment was about 14 in/s (0.35 m/s). 4. finite element modelusing the finite element method (fem), a model of the building was developed in the sap2000 8 computer program. the beams and columns are modeled with bernoulli beam elements. beams have t or l sections with effective flange width on each side of the web equal to four times the slab thickness 5. plastic hinges are assigned to all possible locations where steel bar yielding can occur, including the ends of elements as well as the reinforcing bar cut-off and bend locations. the characteristics of the plastic hinges are obtained using section analyses of the beams and columns and assuming a plastic hinge length equal to half of the section depth. the current version of sap2000 8 is not able to track formation of cracks in the elements. in order to find the proper flexural stiffness of sections, an iterative procedure is used as follows. first, the building is analyzed assuming all elements are uncracked. then, moment demands in the elements are compared with their cracking bending moments, mcr . the moment of inertia of beam and slab segments are reduced by a coefficient of 0.35 5, where the demand exceeds the mcr. the exterior beam cracking bending moments under negative and positive moments, are 516 k in (58.2 kn m) and 336 k in (37.9 kn m), respectively. note that no cracks were formed in the columns. then the building is reanalyzed and moment diagrams are re-evaluated. this procedure is repeated until all of the cracked regions are properly identified and modeled. the beams in the building did not have top reinforcing bars except at the end regions (see fig. 4). for instance, no top reinforcement was provided beyond the bend in beam a1a2, 12 inches away from the face of column a1 (see figs. 4 and 5). to model the potential loss of flexural strength in those sections, localized crack hinges were assigned at the critical locations where no top rebar was present. flexural strengths of the hinges were set equal to mcr. such sections were assumed to lose their flexural strength when the imposed bending moments reached mcr.the floor system consisted of joists in the longitudinal direction (northsouth). fig. 6 shows the cross section of a typical floor. in order to account for potential nonlinear response of slabs and joists, floors are molded by beam elements. joists are modeled with t-sections, having effective flange width on each side of the web equal to four times the slab thickness 5. given the large joist spacing between axes 2 and 3, two rectangular beam elements with 20-inch wide sections are used between the joist and the longitudinal beams of axes 2 and 3 to model the slab in the longitudinal direction. to model the behavior of the slab in the transverse direction, equally spaced parallel beams with 20-inch wide rectangular sections are used. there is a difference between the shear flow in the slab and that in the beam elements with rectangular sections modeling the slab. because of this, the torsional stiffness is setequal to one-half of that of the gross sections 9.the building had infill walls on 2nd, 4th, 5th and 6th floors on the spandrel beams with some openings (i.e. windows and doors). as mentioned before and as part of the demolition procedure, the infill walls in the 1st and 3rd floors were removed before the test. the infill walls were made of hollow clay tiles, which were in good condition. the net area of the clay tiles was about 1/2 of the gross area. the in-plane action of the infill walls contributes to the building stiffness and strength and affects the building response. ignoring the effects of the infill walls and excluding them in the model would result in underestimating the building stiffness and strength.using the sap2000 computer program 8, two types of modeling for the infills are considered in this study: one uses two dimensional shell elements (model a) and the other uses compressive struts (model b) as suggested in fema356 10 guidelines.4.1. model a (infills modeled by shell elements)infill walls are modeled with shell elements. however, the current version of the sap2000 computer program includes only linear shell elements and cannot account for cracking. the tensile strength of the infill walls is set equal to 26 psi, with a modulus of elasticity of 644 ksi 10. because the formation ofcracks has a significant effect on the stiffness of the infill walls, the following iterative procedure is used to account for crack formation:(1) assuming the infill walls are linear and uncracked, a nonlinear time history analysis is run. note that plastic hinges exist in the beam elements and the segments of the beam elements where moment demand exceeds the cracking moment have a reduced moment of inertia.(2) the cracking pattern in the infill wall is determined by comparing stresses in the shells developed during the analysis with the tensile strength of infills.(3) nodes are separated at the locations where tensile stress exceeds tensile strength. these steps are continued until the crack regions are properly modeled.4.2. model b (infills modeled by struts)infill walls are replaced with compressive struts as described in fema 356 10 guidelines. orientations of the struts are determined from the deformed shape of the structure after column removal and the location of openings.4.3. column removalremoval of the columns is simulated with the following procedure.(1) the structure is analyzed under the permanent loads and the internal forces are determined at the ends of the columns, which will be removed.(2) the model is modified by removing columns a2 and a3 on the first floor. again the structure is statically analyzed under permanent loads. in this case, the internal forces at the ends of removed columns found in the first step are applied externally to the structure along with permanent loads. note that the results of this analysis are identical to those of step 1.(3) the equal and opposite column end forces that were applied in the second step are dynamically imposed on the ends of the removed column within one millisecond 11 to simulate the removal of the columns, and dynamic analysis is conducted.4.4. comparison of analytical and experimental resultsthe maximum calculated vertical displacement of the building occurs at joint a3 in the second floor. fig. 7 shows the experimental and analytical (model a) vertical displacements of this joint (the aem results will be discussed in the next section). experimental data is obtained using the recordings of three potentiometers attached to joint a3 on one of their ends, and to the ground on the other ends. the peak displacements obtained experimentally and analytically (model a) are 0.242 in (6.1 mm) and 0.252 in (6.4 mm), respectively, which differ only by about 4%. the experimental and analytical times corresponding to peak displacement are 0.069 s and 0.066 s, respectively. the analytical results show a permanent displacement of about 0.208 in (5.3 mm), which is about 14% smaller than the corresponding experimental value of 0.242 in (6.1 mm).fig. 8 compares vertical displacement histories of joint a3 in the second floor estimated analytically based on models a and b. as can be seen, modeling infills with struts (model b) results in a maximum vertical displacement of joint a3 equal to about 0.45 in (11.4 mm), which is approximately 80% larger than the value obtained from model a. note that the results obtained from model a are in close agreement with experimental results (see fig. 7), while model b significantly overestimates the deformation of the structure. if the maximum vertical displacement were larger, the infill walls were more severely cracked and the struts were more completely formed, the difference between the results of the two models (models a and b) would be smaller. fig. 9 compares the experimental and analytical (model a) displacement of joint a2 in the second floor. again, while the first peak vertical displacement obtained experimentally and analytically are in good agreement, the analytical permanent displacement under estimates the experimental value. analytically estimated deformed shapes of the structure at the maximum vertical displacement based on model a are shown in fig. 10 with a magnification factor of 200. the experimentally measured deformed shape over the end regions of beams a1a2 and a3b3 in the second floorare represented in the figure by solid lines. a total of 14 potentiometers were located at the top and bottom of the end regions of the second floor beams a1a2 and a3b3, which were the most critical elements in load redistribution. the beam top and corresponding bottom potentiometer recordings were used to calculate rotation between the sections where the potentiometer ends were connected. this was done by first finding the difference between the recorded deformations at the top and bottom of the beam, and then dividing the value by the distance (along the height of the beam section) between the two potentiometers. the expected deformed shapes between the measured end regions of the second floor beams are shown by dashed lines. as can be seen in the figures, analytically estimated deformed shapes of the beams are in good agreement with experimentally obtained deformed shapes. analytical results of model a show that only two plastic hinges are formed indicating rebar yielding. also, four sections that did not have negative (top) reinforcement, reached cracking moment capacities and therefore cracked. fig. 10 shows the locations of all the formed plastic hinges and cracks.2,译文: 钢筋混凝土填充框架结构对拆除两个相邻的柱的响应作者:mehrdad sasani 美国波士顿东北大学,斯奈尔400设计中心 ma02115收稿日期:2007年7月27日,修整后收稿日期2007年12月26日,录用日期2008年1月24日,网上上传日期2008年3月19日。摘要:本文是评价圣地亚哥旅馆对同时拆除两根相邻的外柱的响应问题,圣地亚哥旅馆是个6层钢筋混凝土填充框架结构。结构的分析模型应用了有限元法和以此为基础的分析模型来计算结构的整体和局部变形。分析结果跟实验结果非常吻合。当测量的竖向位移增加到为四分之一英寸(即6.4mm)的时候,结构就发生连续倒塌。通过实验分析方法评价和讨论随着柱的移除而产生的变形沿着结构高度上的发展和荷载动态重分配。讨论了轴向和弯曲的变形传播的不同。结构横向和纵向的三维桁架在填充墙的参与下被认为是荷载重分配的主要构件。讨论了两种潜在的脆性破坏模型(没有拉力加强的梁的脆断和有加筋肋的梁的挤出)。分析评价了结构对额外的重力和无填充墙时的响应。 elsevier有限责任公司对此文保留所有权利。关键词:连续倒塌,荷载重分配,对荷载抵抗能力,动态响应,非线性分析,脆性破坏。1, 介绍:作为减小由于结构的局部损坏而造成大量伤亡的可能性措施的一部分,美国总务管理局【1】和国防部【2】出台了一系列制度来评价结构对连续倒塌的抵抗力。【3】定义连续倒塌为,由原始单元的局部破坏在单元间的扩展最终造成结构的整体或不成比例的大部破坏。通过ellingwood 和leyendecker【4】建议的方法,asce/sei 7定义了两种一般模型来减小结构设计时连续倒塌效应产生的损害,它们分为直接和间接的设计方法。一般建筑规范和标准用增加结构的整体性的间接设计方法。间接设计法也应用于美国国防部的降低连续倒塌设计和未归档设备标准中。尽管间接设计法可以降低连续破坏的风险【6,7】,对基于此法设计的结构破坏后的表现的判断是不容易实现的。有一种基于直接设计的方法通过研究瞬间消除受载构件,比如柱子,对结构的影响来评价结构的连续倒塌。美国防部和国家事务管理局的规章是要求去除一个受荷构件,考虑其影响。这样的规范目的是评价结构的整体性和结构的一个单元出现严重的毁坏时的分荷能力。这种方法是研究结构受连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论