高考教学研讨会交流材料《高中数学复习课探究》 .doc_第1页
高考教学研讨会交流材料《高中数学复习课探究》 .doc_第2页
高考教学研讨会交流材料《高中数学复习课探究》 .doc_第3页
高考教学研讨会交流材料《高中数学复习课探究》 .doc_第4页
高考教学研讨会交流材料《高中数学复习课探究》 .doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考教学研讨会交流材料高中数学复习课探究一、小单元复习课教学流程知识结构整合,知识要点总结典型例题,知识迁移变式训练,方法总结反思总结,补偿练习自我测评,走进高考二、复习课应该注意的几个问题1. 要把握好的五个原则:(1)基础知识一步到位原则,落实基础取胜战略;(2)控制题目难度,杜绝难度的一步到位;(3)知识点复习到边到沿,不留任何知识空白;(4)狠抓规范:规范思路、规范步骤、规范作答、规范书写,努力使学生做到:“会而对,对而全,全而美”;(5)要使用好学案导学.2. 高三教学不能面向全体学生(因学业水平考试已结束,学生已毕业),要重点抓好优秀生、有效边缘生、弱科优秀生.但不能放弃后进生,不要让班级过早的出现两极分化,最好不要出现两极分化.3. 课堂上要做到“精讲精练”.(1)“精讲”要尽量做到:讲规律、讲思路、讲方法、讲技巧、讲策略.(2)“精练”要尽量做到:典型例题导引,变式训练提高;练典型,练类型,练思路、练方法、练技巧;要做到节节落实,发展智能.防止“水多泡倒墙”,陷于新的题海战术.(3)落实“三讲三不讲”:三讲是:讲易混点、讲易错点、讲易漏点;三不讲是:学生自己已经学会了的不讲,学生自己能够学会的不讲,老师讲了学生也学不会的不讲.(4)删除无效教学环节,突出重点、难点、疑点、易混点、易错点,突出思想方法;力求优质高效,杜绝“水过地皮湿”.教学过程中不要漫无边际、东拉西扯,删除无效教学环节,让课堂每一分钟都发挥最大效益,提高课堂教学时效,努力做到“堂堂清、节节清”,不把问题留到课后.(5)精选习题,教给学生解题的方法、技巧与规律,研究指导学生有效练习是提高教学成绩的关键.4学生的三次学习:第一次,上课听讲;第二次,完成作业;第三次,总结反思,深化提高,第三次学习是提高学生学习能力的关键.对教师的教与学生的学的顺序,要求是:学生先学,老师后教;学生先做,老师后讲.让学生先思后解,培养学生学习的主人翁意识,使学生学会学习,自觉学习,主动学习.5基础与规范是教学常规,需常抓不懈.6严格要求永不过时:严格出习惯,严格出成绩.学生的学习需要“逼”.严谨的治学态度,持之以恒地抓好落实是提高教学质量的关键.无论什么办法,只要能鼓动学生都一门心思地学习就是好办法.三、高中数学复习课教学案例(仅供参考):直线与圆锥曲线复习课(教案)(沂水三中 李树堂 蔡永明)2010年考纲定位:最新考纲1掌握直线与圆锥曲线的位置关系的判定方法;2.能应用直线与圆锥曲线的位置关系解决一些问题.命题热点直线与椭圆的位置关系是高考考查的热点,主要以解答题的形式出现,多为压轴题.教学目标:知识目标掌握直线与圆锥曲线的位置关系的判定,解决公共点问题、相交弦问题、对称问题.能力目标培养分析、抽象、概括等思维能力;加强函数方程、数形结合、化归转化等数学思想的培养.情感目标培养合作交流、独立思考等良好的个性品质,学会学习;以及勇于批判、敢于创新的科学精神.教学重点:掌握直线与圆锥曲线的位置关系的判定,相交弦长问题,中点弦问题、对称问题.教学难点:弦长问题及对称问题.教学设计:一、基础知识回顾:1. 直线与圆锥曲线的位置关系:(1)相离:无公共点;(2)相切:一个公共点;(3)相交:两个或一个公共点.注意:当直线与双曲线的渐近线平行时,直线与双曲线必相交且只有一个交点; 当直线与抛物线的对称轴平行或重合时,直线与抛物线必相交且只有一个交点.2. 判断方法:设直线,圆锥曲线.(1)几何法:数形结合处理;(2)代数法:由直线方程与圆锥曲线方程构成方程组,消元后得方程,通过方程的解的情况判断直线与圆锥曲线的位置关系. 若,则方程为一次方程,只有一解,此时位置关系为相交.若,当,直线与圆锥曲线相交,两个公共点;当,直线与圆锥曲线相切,一个公共点;当,直线与圆锥曲线相交,0个公共点.注意:当直线与圆锥曲线只有一个公共点时,直线与圆锥曲线位置关系为相交或相切; 当直线与圆锥曲线联立时,消元后注意非二次方程情形.3直线与圆锥曲线相交的弦长公式:设直线与圆锥曲线分别交于、两点,则弦长=注意:要重视韦达定理和判别式在相交弦长公式中的应用; 要重视函数方程思想,数形结合思想,分类讨论思想,转化与化归思想等在解题中的应用.二、热点突破热点一: 直线与圆锥曲线位置关系的判定例1 (1)已知直线,抛物线,当实数为何值时,直线与抛物线分别相交,相切,相离?(2)若直线与双曲线的右支交于不同的两点,求实数 的取值范围;解析:略.变式训练一:已知直线,椭圆,则直线与椭圆的位置关系为 .变式训练二:若过点作直线与椭圆恒有公共点,则实数的取值范围是 .变式训练三:若过点作直线与抛物线只有一个公共点,则这样的直线有 条.变式训练四:若过点作直线与抛物线只有一个公共点,则这样的直线有 条.变式训练五:若过点作直线与抛物线只有一个公共点,则这样的直线有 条.规律总结:代数法(函数方程思想):不能忽视消元后方程二次项系数是否为0;几何法(数形结合思想):注意在判断位置关系中的灵活应用.热点二: 相交弦长问题:例2 (2008北京,)已知的顶点a,b在椭圆上,c在直线.(1)当ab边通过坐标原点o时,求ab的长及的面积;(2)当,且斜边ac的长最大时,求ab所在直线方程.解析:略.规律总结:(1)弦长公式实质上就是两点间的距离公式的变形,利用根与系数的关系达到“设而不求”的效果,简化运算. 不能忽视对解题的影响.(2)直角的应用:斜率之积为;勾股定理;数量积为0.热点三:中点弦问题:例3 在椭圆中,求通过点m(2,1)且被这点平分的弦所在直线方程.解析:略.规律总结:涉及弦长的中点问题的常用处理方法:点差法 (代点作差法或平方差法):采用“设而不求”的思想处理,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化,是处理中点弦问题的首选方法.代入法:借助韦达定理和中点坐标公式解决.变式训练:已知椭圆,问在椭圆中是否存在以点m(2,1)为中点的弦?若存在,求出该弦所在直线方程;若不存在,请说明理由.规律总结:此变式属于“存在性问题”,除利用例3两种方法处理外,还必须用判别式进一步检验直线是否存在.热点四: 对称问题 例4 已知抛物线上存在关于直线:对称的两点、,求实数的取值范围.解析:略.规律总结:(1)若两点、关于直线对称,则直线与对称轴直线垂直,且线段的中点在对称轴直线上.解决对称问题应注意垂直与平分条件的充分利用,同时还应注意各量(如斜率、截距、等)之间的关系.(2)已知点,抛物线.则点;点;点.三、达标练习:(设计意图:考查学生对本节课知识的掌握情况,查漏补缺.)1过点作直线与抛物线有且只有一个公共点,则满足上述条件的直线共有( )a. 条 b. 条 c. 条 d. 条2. 椭圆与直线交于两点,的中点为,且的斜率为,则的值为()a. b. c. d. 3.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的 条件.4. 已知双曲线的一个焦点为,直线与其相交于m,n两点,且线段mn的中点的横坐标为,则此双曲线的标准方程为 .5. 已知椭圆与直线相交于两点,是线段的中点,若的斜率为,求此椭圆的方程.6. 若椭圆上存在两点a、b关于直线,求实数的取值范围.四、能力提升: 已知抛物线,直线交抛物线两点,的中点,过点轴的垂线交抛物线点.(1)证明:抛物线点处的切线与直线平行;(2)是否存在实数?若存在,求实数的值;若不存在,说明理由.五、作业:(2009辽宁,)已知椭圆c经过点a,两个焦点为.(1)求椭圆的方程;(2)e、f是椭圆上的两个动点,如果直线ae的斜率与af的斜率互为相反数,证明直线ef的斜率为定值,并求出这个定值.六、板书设计: (设计意图:直观清晰,重点、难点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论