机器人系列animaltracking for behavior _第1页
机器人系列animaltracking for behavior _第2页
机器人系列animaltracking for behavior _第3页
机器人系列animaltracking for behavior _第4页
机器人系列animaltracking for behavior _第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Robotics and Intelligent Machines Georgia Tech Animal Tracking for Behavior Modeling James M. Rehg Georgia Tech (standing in for Tucker Balch) Robotics and Intelligent Machines Georgia Tech People PI Tucker Balch Faculty Jim Rehg, Computer Science Collaborator on animal tracking Aaron Bobick, Computer Science Collaborator on animal behavior modeling Bruce Walker, Psychology Collaborator on aquarium project Atsushi Nakazawa, Computer Science (Osaka Univ., Japan) Collaborator on animal tracking PhD Students Michael Novitzky Jin Lee Matthew Flagg Robotics and Intelligent Machines Georgia Tech Goals Track social animals reliably under natural conditions (in vivo) from video Estimate behavioral parameters from tracking data Construct executable models of social animal behavior Develop a biologically-inspired protocol for dynamic team formation Robotics and Intelligent Machines Georgia Tech Year 1 Overview Goal Develop reliable multi-target tracking algorithms for animals in video Approach Jointly estimate segmentation and motion of a nonrigid, deformable target Key requirements Reliably estimate target shape over time, to support behavioral analysis Minimize the amount of human effort required Robotics and Intelligent Machines Georgia Tech Challenges Accurate segmentation of target Set-point tracking is not sufficient Track reliably with significant camera motion Background subtraction is not sufficient Handle a wide range of animals Scalable solution for the animal kingdom Track multiple interacting targets Multiple instances of target type (e.g. wolf pack) Occlusions (with self, other targets, and background) Track long sequences, track across cuts Robotics and Intelligent Machines Georgia Tech Approach Basic research in video object segmentation and tracking Modular software architecture Easily change features, models, and solver Testing in two scenarios Aquarium Monitoring Long sequences, static camera, some modeling effort Tracking Animal Planet videos Shorter sequences, moving camera, minimal human effort Preliminary application Accessible Aquarium Project Robotics and Intelligent Machines Georgia Tech Tracking App Basic Trackers: -Contour feature w/ Iterated Closest Point -Color feature w/ Mean Shift Robotics and Intelligent Machines Georgia Tech Color Histogram Tracker Fish Model: Appearance model For each species of fish, multiple HSV Color Histograms on Image patches Off-line Model Selection by Human Detection and Tracking: Histogram-based mean shift approach Maximization of Bhattacharyya Coefficient between Observation and Model Selection of a model with the highest coefficient and update track Robotics and Intelligent Machines Georgia Tech Histogram-based Model Selection Model Image Patches (to build histogram) Input Image Similarity between shifted & model patches 0. 6 0. 5 0. 7 0. 8 0. 3 Best Model * Image Patch after Mean-shifting Robotics and Intelligent Machines Georgia Tech Accessible Aquarium Project Provide a meaningful and informative aquarium experience for visually-impaired or blind visitors Approach Track the movement of individual fish within tank Sonify the fish movement Example: 65 gallon marine aquarium Track yellow tangs and blue chromis Music structure is Bach chorale Each fish type is same instrument, different registers Movement speed mapped to note density (tempo) Horizontal dimension is stereo, vertical is timbre Robotics and Intelligent Machines Georgia Tech Example Play video Robotics and Intelligent Machines Georgia Tech Tracking in the Video Volume Robotics and Intelligent Machines Georgia Tech Graphcut Tracking Robotics and Intelligent Machines Georgia Tech Tracking Results Robotics and Intelligent Machines Georgia Tech Social Game Retrieval Robotics and Intelligent Machines Georgia Tech Overview Robotics and Intelligent Machines Georgia Tech Summary of Progress Robust long-life tracking of multiple targets (fish) Tracking under controlled (but realistic) conditions Virtual Aquarium Project Novel experience of animal behavior via sonification New state-of-art motion segmentation algorithm Accurate segmentation of (shorter) video sequences under a wide range conditions Robotics and Intelligent Machines Georgia Tech Year 2 Pl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论