已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科毕业设计(论文) 数据拟合的几个应用实例 学 院: 专 业: 学生姓名: 学 号: 指导教师: 答辩日期: 毕业设计任务书 学院: 系级教学单位: 学 号 学生 姓名 专 业 班 级 题目名称 数据拟合的几个应用实例 题目类型 论文 题目性质 理论研究型 题 目 题目来源 自选 主 要 内 容 1. 处理两个变量之间关系的曲线拟合基本理论。 2. 多元函数拟合的基本理论。 3. 曲线拟合在工程实际中的应用实例。 4. 多元函数拟合在工程实际中的应用实例。 5. 对所研究问题进行理论分析。 基 本 要 求 1. 通过阅读参考文献和有关资料,了解数据拟合的重要意义以及目前关 于数据拟合问题的研究现状。 2. 了解并掌握数据拟合的基本理论和方法。 3. 归纳总结数据拟合理论在工程中实际应用的典型实例。 4. 阐述数据拟合的发展前景及所面临的任务。 参 考 资 料 1 李庆扬.数值分析.武汉:华中科技大学出版社,2006,6469 2 李士雨,工程数学基础数据处理与数值计算.北京:化学工业出 版社,2005,137 3 吴刚. 隐式多项式曲线的信息建模研究进展. 计算机科学 , 2010,37 (10):3337,47 4 un salan c. a new robust and fast implicit polynomial fitting techniquec. proceedings of mvip 1999. 1999, 9:1520 周 次 14 周 58 周 912 周 1316 周 1718 周 应 完 成 的 内 容 明确任务, 搜集国内外研 究数据拟合的 最新成果,整 理资料并梳理 思路。 研究数据 拟合理论的基 本公式。 归纳总 结数据拟合 理论典型的 工程实际应 用。 整理结果, 撰写论文及 打印论文。 打印毕业论 文,准备答辩。 指导教师: 职 称: 年 月 日 系级教学单位审批: 年 月 日 摘要 i 摘要 曲线拟合和曲面拟合是实际工程中的重要问题。该问题是指由已知的 实验数据点拟合出物体的数学几何模型。这是对物体进行分析、计算和绘 制的根据,也是研究曲线和曲面性质的很重要的途径。 本文首先指明了数据拟合的研究背景和意义,以及关于数据拟合问题 所做的相关工作和当前的研究现状。二次拟合曲线由于有着良好的几何特 性、较低的次数及灵活的控制参数,成为基本的体素模型之一,在计算机 图形学和计算机辅助几何设计等领域中起着重要的作用。 解决数据拟合问题的基本思想是最小二乘方法,本文中给出了最小二 乘的基本思想。分析解决数据拟合问题所采用的算法,并对典型性的算法 进行了较为详细的求解。另外本文对拟合时采用的目标函数进行了综合分 析及相关证明。 关键词 曲线拟合;曲面拟合;最小二乘法;工程应用 燕山大学本科生毕业设计(论文) ii abstract curve and surface fitting are two important problems in real engineering. reconstructing the geometrical model of the object from the sample points carries on the foundation of analyzing, calculating and drawing of the object. it is also a very important way to study the nature of curves and surfaces. this paper first introduces the background and importance of the study of the data fitting. some existing work and methods about data fitting are introduced. conic is one of basic elements in reconstructing a model because of its good geometric characters, low order and flexible parameters. it plays an important role in the area of computer graphics and cagd. it is usually based on the principle of least-squares method to solve the problem of data fitting. so in this paper,we introduce the concept of least- squares method. we analyze the algorithm which be used to solve the problem of data fitting. for typical algorithms, we provides detailed procedure of solving. in addition, in this paper, when fitting that i have comprehensive analysis and the relevant evidence of the objective function key words curve fitting; surface fitting; least-squares method; engineering applications iii 目录 摘要 i abstractii 第 1 章 绪论 1 1.1 课题国内外研究动态,课题研究背景及意义 1 1.1.1 国内外的研究现状 2 1.1.2 课题研究的意义 3 1.2 研究主要成果 3 1.3 发展趋势 5 1.4 研究的基本内容 6 1.5 论文的主要工作及结构安排 6 第 2 章 数据拟合的基本理论 8 2.1 最小二乘曲线拟合 8 2.1.1 多项式拟合 10 2.1.2 正交多项式作最小二乘拟合的原理 11 2.1.3 非线性最小二乘拟合 12 2.2 多元最小二乘拟合 14 2.3 最小二乘法的另一种数学表达 16 2.4 本章小结 18 第 3 章 数据拟合应用实例 19 3.1 数据拟合在物理实验中的应用 19 3.1.1 多项式拟合 19 3.1.2 指数拟合 19 3.2 数据拟合在塔机起重量监测系统中的应用 21 3.2.1 工程原理 21 3.2.2 应用实例 22 3.3 数据拟合在翅片管传热性能试验中的应用 23 3.3.1 工程原理 24 iv 3.3.2 应用实例 26 3.4 数据拟合在机械参数测量模型研究中的应用 29 3.4.1 工程原理 30 3.4.2 模型估计算法的研究 30 3.4.3 应用实例 30 3.5 数据拟合在轮辋逆向工程设计中的应用 32 3.5.1 工程原理 33 3.5.2 参数拟合算法 34 3.5.3 轴截面圆半径的拟合算法 34 3.6 数据拟合在其他实际工程中的应用 36 3.6.1 数据拟合在等离子弧温度场测算中的应用 36 3.6.2 数据拟合在化工装备设计开发中的应用 37 3.6.3 数据拟合在透气性测试方面的应用 37 3.7 本章小结 38 结论 39 参考文献 40 致谢 42 附录 1.43 附录 2.50 附录 3.56 第 1 章 绪论 1 第 1 章 绪论 1.1 课题国内外研究动态,课题研究背景及意义 数学分有很多学科,而它主要的学科大致产生于商业计算的需要、了 解数字间的关系、测量土地及预测天文事件。而在科技飞速发展的今天数 学也早已成为众多研究的基础学科。尤其是在这个信息量巨大的时代,实 际问题中国得到的中离散数据的处理也成为数学研究和应用领域中的重要 的课题。 在解决实际工程问题和科学实验的过程中,经常需要通过研究某些变 量之间的函数关系,帮我们去认识事物内在的规律和本质属性,这些变量 间的未知的关系一般隐含在从观测、试验而得到的一组离散的数据之中。 所以,是否能够根据一组试验观测数据来找到变量之间的相对准确的函数 关系成为了解决工程实际问题的关键。 比如在工程实践与科学实验中,我们经常要从一组试验数据 ,i (,)ixy = 0,1,.,n 中来寻找自变量 x 和因变量 y 之间的函数关系,通常可以用一个 近似函数 y = f (x)表示。而函数 y = f (x)的产生方法会因为观测数据和具体 要求不同而不同,通常我们可以采用数据拟合和函数插值两种方法来实现。 数据拟合主要考虑到了观测数据会受到随机观测误差的影响,需要寻 求整体误差最小、能够较好的反映出观测数据的近似函数 y = f (x),这时并 不要求得到的近似函数 y = f (x)必须满足 = , i = 0,1,n。yi()fx 函数插值则要求近似函数 y = f (x)在每一个观测点 处一定要满足 = i yi ,i = 0,1,n。在这种情况下,通常要求观测数据相对比较准确,即()fx 不考虑观测误差的影响。 在实际问题中,通过观测数据能否正确揭示某些变量之间的关系,进 而正确认识事物的内在规律与本质属性,往往取决于两方面因素。其一是 观测数据的准确性或准确程度,这是因为在获取观测数据的过程中一般存 在随机测量误差,导致所讨论的变量成为随机变量。其二是对观测数据处 理方法的选择,即到底是采用插值方法还是用拟合方法 1-3,插值方法之中、 2 拟合方法之中又选用哪一种插值或拟合技巧来处理观测数据。插值问题忽 略了观测误差的影响,而拟合问题则考虑了观测误差的影响。但由于观测 数据客观上总是存在观测误差,而拟合函数大多数情况下是通过经验公式 获得的,因此要正确揭示事物的内在规律,往往需要对大量的观测数据进 行分析,尤为重要的是进行统计分析。统计分析的方法有许多,如方差分 析、回归分析等。数据拟合虽然较有效地克服了随机观测误差的影响,但 从数理统计的角度看,根据一个样本计算出来的拟合函数(系数),只是拟 合问题的一个点估计,还不能完全说明其整体性质。因此,还应该对拟合 函数作区间估计或假设检验,如果置信区间太大或包含零点,则由计算得 到的拟合函数系数的估计值就毫无意义。这里所采用的统计分析方法就是 所谓的回归分析。另外还可用方差分析的方法对模型的误差作定量分析。 所以,据科学和工程问题可以通过比如采样、实验等方法而得到若干 的离散的数据,根据这些离散的数据,我们往往希望能得到一个连续函数 (也就是曲线 )或者更加密集的离散方程与已知数据相吻合。这个过程叫做 拟合。也就是说,如果数据不能满足某一个特定的函数的时候,而要求我 们所要求的逼近函数“ 最优的 ” 靠近那些数据点,按照误差最小的原则为最 优标准来构造出函数。我们称这个函数为拟合函数。 现在,对数据点进行函数拟合以获得信息模型是许多工程应用领域的 一个核心问题。而为了适应这个多元化的世界中,为了能够满足各种各样 的应用领域的要求,针对他们而对各种拟合方法的改进和研究也从未停止 过。 1.1.1 国内外的研究现状 在通过对国内外有关的学术刊物(如计算机科学 、 宇航学报 、 中 原工学院学报等)、国际国内有关学术会议和网站的论文进行分析。数据 拟合的研究和应用主要是面对各种工程问题,有着系统的研究和很大的发 展。通过研究发展使得数据拟合有着一定的理论研究基础。尤其是关于数 据拟合基本的方法最小二乘法 4-9的研究有着各种研究成果。 但是,由于现实问题的复杂性,数据拟合还拥有很好的研究空间,还 有很多能够优化和创新的问题需要去研究和探索。各种算法的改进和应用 第 1 章 绪论 3 以及如何得到合适的模型一直是一个比较热门的研究领域。 例如,国内外文献里提出了很多基于形状的描述方法,比如傅氏描述 子法、多边形法、累积角法等, 其中以二次曲线和超二次曲线来拟合物体 的边界形状并进行物体的描述已获得广泛应用。现在,我们应用高次隐式多 项式曲线来作为物体的几何模型受到广泛的重视。应用高次隐式多项式曲 线和曲面 10-15为各个领域的数据进行可视化建模还没有广泛的研究。用隐 式多项式曲线来描述数据点集合的轮廓有天然的优势,在数据点集合轮廓的 拟合过程中,为业务信息建模所具有的优点,其它建模方法根本无法比拟, 这主要是因为隐式多项式曲线有着精确的表达能力,隐式多项式曲线的参 数完全取决于它的次数和系数,解析式明确,操纵和使用方便,它还具有 着天然的数据噪声过滤能力和修补能力。 所以说,在现在这个各个工程领域飞速发展的今天,数据拟合在实际 应用与研究中仍然有着不小的发展空间。 1.1.2 课题研究的意义 归纳总结数据拟合理论在工程中实际应用,发掘各个数据拟合算法的 在实际应用中的应用范围适用性。通过对本项目的研究和分析,使得实际 中的工程问题根据不同的需求使用最合适的拟合算法,从而提高拟合的精 确度。 研究和发展数据拟合理论,发掘各种数据拟合的优化方案。 根据离散的数据,我们想要得到连续的函数或更加密集的离散方程与 已知数据相吻合。如何选择数学模型,如何减小误差,如何使得逼近函数 图像最靠近那些数据点,使得优化拟合算法变得十分重要。 1.2 研究主要成果 作为数据拟合的最基本也是应用最广泛的方法,最小二乘法有了很大 的发展。在工程实际应用和实验中,我们经常采用实验的方法寻找变量间 的相互关系。但是,当观测到的数据较多时,一般情况下使用插值多项式 来求近似函数是不现实的。根据多元函数线性回归理论,使用曲线拟合最 小二乘法来寻求变量之间的函数关系能够很好的解决这个问题。而且我们 4 对它在实际应用中产生各方面的需求有着各种研究。例如:基于于均差最 小二乘拟合方程形式的研究、数据拟合函数的最小二乘积分法、非线性最 小二乘法等各种方法已经在工程中得到了应用。 所谓数据拟合的最小二乘法(generalized least squares)是一种数学优化 的技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,并使得这 些求得的数据与实际数据之间误差(残差)的平方和为最小。为了使问题的 提法更具有一般性,通常把最小二乘法中的误差(残差)平方和都考虑为加 权平方和。最后为了使误差的加权平方和最小,会转化为求多元函数的极 小点的问题。其有关概念与方法可以推广到多元函数拟合之中。 最小二乘法在运筹学、统计学、逼近论和控制论中,是很重要的求解 方法。例如,它在统计学之中是估计回归参数最基本的方法。 但是关于最小二乘法的发明权,我们在数学史的研究中还没有定论。 有些材料表明了高斯和勒让德分别独立提出这种方法。资料表明勒让德在 1805 年首次公开发表了关于最小二乘法的论文。这时,高斯指出,他早在 1795 年之前就使用了这一种方法。可是数学史的研究者们只找到了关于高 斯约在 1803 年之前使用了这一种方法的证据。 最小二乘法历史简介: 1801 年,意大利的天文学家朱赛普皮亚齐发现了第一颗小行星(谷神 星)。但是经过了 40 天的跟踪观测之后,因为谷神星运行至太阳的背后, 使得朱赛普皮亚齐失去这颗小行星的位置。在这之后全世界的科学家都开 始利用皮亚齐观测的数据开始寻找这颗小行星,但是根据大多数科学家计 算的结果,都没有找到谷神星。当时,24 岁的高斯也用相关数据计算了谷 神星的轨道。奥地利天文学家海因里希奥尔伯斯根据高斯所计算出的轨道 重新发现了谷神星。 高斯所使用的最小二乘法的方法在 1809 年发表于他的著作天体运动 论中。 法国科学家勒让德在 1806 年独立发现了“最小二乘法” 。但是因为不为 时人所知而默默无闻。 勒让德曾与高斯为“ 是谁最早创立了最小二乘法原理” 而发生争执。 第 1 章 绪论 5 在 1829 年,高斯给出了最小二乘法优化效果强于其他方法的证明,被 称为高斯- 马 尔 科 夫 定 理 。 高 斯 -马 尔 科 夫 定 理 : 在 给 定 经 典 线 性 回 归 模 型 的 假 定 下 , 最 小 二 乘 估 计 量 , 在 无 偏 线 性 估 计 一 类 中 , 有 最 小 方 差 , 就 是 说 , 它 们 是 blue(best linear unbiased estimator), 即 最佳线性无偏估计。 在实际工程问题中,如何由测量的离散数据设计和确定最优的拟合曲 线?其关键在于选择适当类型的拟合曲线,一些时候根据专业的知识和我 们的经验就可以确定拟合曲线类型;但是当我们在对拟合曲线一无所知的 情况下,可以先绘制离散数据的粗略图形,也许能够从中观测出拟合曲线 的类型;或者对数据进行多种可能较好的曲线类型的拟合,并且计算出它 们的均方误差,利用数学实验的方法找出最小二乘法意义下误差最小的拟 合函数。 例如最简单的一次函数 y=kx+b,已知坐标轴上有一些点(1.2,2.0),(2.1,3.2), (3.0,3.9),(4.0,6.1),(5.2,6.1),求过这些点的图象的一次函数关系式。一般情况 下这条直线不可能恰好经过每一个点,所以我们只要做到这 5 个点到所求的 直线的距离的平方和最小就可以了,这里就需要用到最小二乘法的基本思想. 然后就利用线性拟合的方法来求直线。一般只用于建模。 在离散数据的最小二乘法中,最简单、最常用的数学模型是多项式拟 合。 另外,近年来对高次隐式多项式曲线来作为物体的几何模型也受到广 泛的重视,用隐式多项式曲线来描述数据点集合的轮廓也有了初步的比较 系统的研究。 随着数据拟合的广泛应用出现了许多可以进行拟合的应用软件 16。 originpro,matlab ,sas,spss,datafit ,graphpad,tablecurve2d,tab lecurve3d,mathematica 等其功能都十分优秀。他们还具有自动选择数学 模型的功能。 1.3 发展趋势 应用高次隐式多项式曲线和曲面为各个领域的数据进行可视化建模还 没有广泛的研究。用隐式多项式曲线来描述数据点集合的轮廓有天然的优 6 势,在数据点集合轮廓的拟合过程中,为业务信息建模所具有的优点,其它 建模方法根本无法比拟,这主要是因为隐式多项式曲线有着精确的表达能 力,隐式多项式曲线的参数完全取决于它的次数和系数,解析式明确,操 纵和使用方便,它还具有着天然的数据噪声过滤能力和修补能力。 隐式多项式曲线的信息建模近年有了很大的发展。对隐式多项式曲线 进行分析看出,minmax 算法十分精确地拟合了数据点的形状,并且非常 的稳定,只需要对 3l 集合的权值参数调整问题做进一步的研究, minmax 等隐式多项式曲线的拟合算法抛弃了需要迭代的优化算法,只需要求解一 个线性方程组就能够确定隐式多项式曲线方程的系数,可以说已经趋于成 熟。我们可以预见,把这种建模思想应用到各种数据点集合之中必将带来 很大的发展空间。 随着计算机的广泛应用,利用计算机相关软件解数据拟合问题也已经 成为了不可缺少的步骤。 1.4 研究的基本内容 数据拟合理论体系的研究:研究数据拟合的基本理论,了解并掌握数 据拟合的基本理论和方法。通过阅读参考文献和有关资料,学习数据拟合 的重要意义以及目前关于数据拟合问题的研究现状。并对目前数据拟合的 各种方法的特点做出概述。 (1)处理两个变量之间关系的曲线拟合基本理论,并对其方法进行分析。 (2)多元函数拟合的基本理论,并对其方法进行分析。 数据拟合在工程实际中应用实例的研究:归纳总结数据拟合理论在工 程中实际应用的典型实例。通过分析实际的工程应用实例的有关资料,掌 握数据拟合在实际工程中的应用方式。对其进行分析,研究数据拟合在实 例应用中的合理性和可行性。研究各种方法在理论与实例应用之间的关系。 研究数据拟合在实例应中的灵活行。 (1)曲线拟合在工程实际中的应用实例,并对其特点进行分析和总结。 (2)多元函数拟合在工程实际中的应用实例,并对其特点进行分析和总 结。 第 1 章 绪论 7 1.5 论文的主要工作及结构安排 由上可知,论文将从数据拟合发展过程、特点、基本方法以及数据拟 合在工程实际中的应用实例对数据拟合进行全面、深入地研究,在此基础 上,归纳总结数据拟合在工程问题中的各种应用,并对其进行理论分析。 具体内容安排如下: (1)第 2 章主要从理论的角度研究数据拟合的基本思想,方法。分别从 处理两个变量之间关系的曲线拟合基本理论和多元函数拟合的基本理论两 个大的方面进行研究细分。 (2)第 3 章主要通过工程实际中的应用实例,利用数据拟合的基本理论 也分别从曲线拟合在工程实际中的应用实例和多元函数拟合在工程实际中 的应用实例进行归纳并进行分析。 8 第 2 章 数据拟合的基本理论 9 第 2 章 数据拟合的基本理论 科学和工程问题可以通过比如采样、实验等方法而得到若干的离散的 数据,根据这些离散的数据,我们往往希望能得到一个连续函数(也就是曲 线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。也就 是说,如果数据不能满足某一个特定的函数的时候,而要求我们所要求的 逼近函数最优的靠近那些数据点,按照误差最小的原则为最优的标准来构 造出函数。 在科学计算中经常要建立实验数据的数学模型。给定函数的实验数据, 需要用比较简单和 合适的函数来逼近(或拟合)实验数据。这种逼近的特点是: (1) 是需要适度的精度的; (2) 实验数据有一些小的误差; (3) 对于一些问题,可能有一些特殊的信息能够用来选择实验数据的 数学模型。 逼近离散数据的基本方法就是曲线拟合,常采用最小二乘拟合。 曲线拟合问题的数学描述是,已知一组(二维)数据 ,i = ),(yxi 1,2,n(即平面上的 n 个点 ,i = 1,2,n), 互不相同,寻找一个函),(yxi i 数(曲线 )y = f(x),使得 f(x)在某种准则下与所有的数据点最接近,即曲线拟 合得最好。 2.1 最小二乘曲线拟合 对于已知的 m+1 的离散数据 和权数 ,记miiyx0,mi0ixba0an 在连续函数空间 ca,b中选定 n+1 个线性无关的基函数 ,并记由kx0)( 它们生成的子空间 。如果存在)(,)(10xspn (2-1)*kax 使得 10 (2-2)*2 2()0 0min() ni ixiyyx 则称 为离散数据 在子空间 中带权 的最小二乘拟合。)(*xmiix0,mi0 函数 在离散点处的值为 (2-3)0()(),1, nijaxi 因此,(2-2)右边的和式是参数 的函数,记作n1 (2-4)20010 )(),( minjijixayi 这样,求极小值问题(2-2)的解 ,就是求多元二次函数(*x 的极小点 使得),(*1*0na ),(10nai (2-5)01* 01,i,)nnaria 由求多元函数极值的必要条件 (2-6)002(), mnijikiikiyxa 若记 (2-7)0(,)()()mjkijikii x (2-8)ndxff kikiiik ,10,0 上式可改写为 (2-9),.(;),(akjnojk 这个方程称为法方程,可写成矩阵形式 (2-10)dg 其中 (2-11)0101(,.),(,.)ttnnaa (2-12) ),(),(),(,(1010nnn 第 2 章 数据拟合的基本理论 11 由于 线性无关,故|g|0,方程(2-9)存在唯一的解)(),(10xxn (2-13)*,01,kan 从而得到函数 f(x)的最小二乘解为 (2-14)*0()()nksxx 可以证明,这样得到的 ,对于任何 ,都有s (2-15)*2 2*0 0()() n ni iii iii if fxx 故 是所求的最小二乘解。记 ,显然,平方误差 或均)(*xs )(xy2 方误差 越小,拟合的效果越好。2 2.1.1 多项式拟合 前面讨论了子空间 中的最小二乘拟合。这是一种线性的拟合模型。 在离散数据最小二乘拟合中,最简单、最常用的数学模型是多项式。 为了确定数据拟合问题,我们选用 作为函数类,有 21,nx (2-16)201()xaa (1)m 这就是多项式拟合函数。 为了确定拟合函数 的系数,需要求解正201nxx 规方程组 (2-17) 01112112011 11mmnkkkmkkknkmnnnnkkkkaayxxaaxy 也可以用矩阵形式表示为 12 (2-18) 111021112111mmmnkkkkkkknmmmn nkkkkxxyaxxxy 解得 即可,将其代入(2-16)即可得到拟合多项式。01,na 第 2 章 数据拟合的基本理论 13 2.1.2 正交多项式作最小二乘拟合的原理 用一般的最小二乘法拟合时其法方程的系数矩阵 g 是病态的,但如果 用正交多项式拟合可以不通过求法方程来确定 ,显然拟合*.(0,12)ka 的效果较好。 即如果 是关于点集 的带权)(),(10xxn mix, 正交的函数族,有mix, (2-19)00,(,)()()mjkijikiki ja 则方程组(2-9)的解为 (2-20)*02 ()()(,),k0,1.nmiiikik iikifxfa 且平方误差为 (2-21)22*0()nkkfaa 根据已知的节点 及权函数 先构造带权 正交的多01,mx x)(x 项式 。用递推的公式表示 :(),npx()kp (2-22)1101 ()()(),2,1)kkkxxn 这里 是首项系数为 1 的 k 次多项式。根据 的正交性得:()kpx kpx (2-23) 2012011()(),(,)()(,)(,21)miii kkkikiimikii kkiiipxppnx 用正交多项式 的线性组合作最小二次拟合,只要在逐步求 的()k ()kpx 同时,相应计算出系数 14 (2-24)02 ()()(,),0,12)miikikik iiixfpfpa n 并逐步把 累加到 中去,最后即可得所求拟合曲线*()kx()fx (2-25)*01()()nyapxapx 这里的 n 可以是事先给定的或根据误差确定。 使用这种方法编程序不用解方程组,只用递推公式,并且当逼近次数 增加一次时,只要把程序中循环数加 1,其余不用改变。这是目前用多项 式做曲线拟合的最好计算方法,有通用的语言程序供用户使用。 2.1.3 非线性最小二乘拟合 在最小二乘法曲线拟合时,通常会遇到很多的非线性函数,这些非线 性函数大多数可以通过数学变换进行线性化。例如用指数函数 来拟bxyae 合,首先两边取自然对数,得 ,可以令 得到lnyabx*ln,l, 。先做出 的一次线性拟合,然后再计算出原始模型的参数。*yabxl 下面给出常见函数的线性化方法和函数图形: 幂函数: byx 令 ,则lg,lyyxxlgyabx 指数函数: bae 第 2 章 数据拟合的基本理论 15 可令 ,则ln,yyxxlnyabx 对数函数: lgab 令 ,则,lgyyxxyabx 负指数函数: e 令 ,则1ln,yyxxlnyabx s 型曲线: xabe 16 令 ,则1,xyxeyyabx 选取的数学模型可根据来源不同分为半经验(或半机理)模型和经验模 型。 如果数学模型的建立有一定的理论依据,即根据机理写出模型结构, 再由实验数据估计模型参数,这时建立的模型是半经验模型。 而经验模型的建立又分两种情况,一是无任何理论依据,但有经验公 式可供选用,二是无任何参考。只有根据曲线形状来判断,选用形状接近 的函数做拟合模型。 综上所述,两个变量的最小二乘法曲线拟合问题的求解步骤可归纳为 以下四个步骤。 第一步:建立数学模型,推荐优先使用机理模型,没有机理模型时, 需要对试验点绘图,根据曲线的形状选择合适的经验模型。 第二步:线性化,如果所建立的模型是非线性的,需要通过适当的数 学变换将其线性化。 第三步:计算参数,首先根据线性模型计算出参数,再根据第二步的 线性化公式计算出原始的模型参数。 第四步:拟合效果评价,对拟合效果做出定量评价。 2.2 多元最小二乘拟合 最小二乘法的有关概念可以推广到多元函数中,例如已知多元函数 (2-26)12(,)lyfx 的一组测量数据 ,以及它的一组权系数12(,)ilix m ,要求函数0i(,)m (2-27)1212(,)(,),nnlklsxaxn 使得 (2-28)201 121(,)(,)mninilifaysx 最小,这与前面一元最小二乘法中的求极值的问题完全是一样的,系数 同样满足一元最小二乘法问题中的法方程组,只不过这里的12,na 第 2 章 数据拟合的基本理论 17 (2-29)12121(,)(,)(,)mkjikilijilixx 求解法方程组 (2-30)(,),(0,.)nkjkjoadn 就可以得到 从而得到 。我们称,(0,1.ka12nlsx 为函数 的最小二乘拟合。12(,)nlsx 12(,)lyfx 基本与两个变量的最小二乘法曲线拟合问题的求解步骤相同。但是, 多元拟合的难点在于非线性模型线性化。 将上述最小二乘法拟合曲线的方法加以改进, 推广至三维空间即为散 乱数据点的曲面拟合, 由于多项式拟合在次数较高时会出现龙格现象, 为了 避免这一现象的发生,可以采用双三次多项式来拟合三维散乱数据。 给定一组数据点 设双三次曲面方程为( , ),0,12, xiyzim (2-31)232301 1 , )( )zfxyaaxbyby 即 (2-32) 2201234532 36789101123321145, fcyccxxyx 对该双三次曲面方程,考虑 (2-33) 20150(,)(,)miiigcfyz 同上面曲线拟合的解法完全类似,可以很快求得 (2-34)*30115 , fxycxx 的系数,即可得到散乱数据的曲面拟合函数。 龙格现象:在计算方法中,有利用多项式对某一函数的近似逼近,这 样,利用多项式就可以计算相应的函数值。例如,在事先不知道某一函数 的具体形式的情况下,只能测量得知某一些分散的函数值。例如我们不知 道气温随日期变化的具体函数关系,但是我们可以测量一些孤立的日期的 气温值,并假定此气温随日期变化的函数满足某一多项式。这样,利用已 经测的数据,应用待定系数法便可以求得一个多项式函数 。应用此函()fx 数就可以计算或者说预测其他日期的气温值。一般情况下,多项式的次数 18 越多,需要的数据就越多,而预测也就越准确。 例外发生了,龙格在研究多项式插值的时候,发现有的情况下,并非 取节点( 日期数 )越多多项式就越精确。著名的例子是 。它21/()5)fxx 的插值函数在两个端点处发生剧烈的波动,造成较大的误差。究其原因, 是舍入误差造成的。 综上所述,多元拟合问题的求解步骤分为如下四步: 第一步:建立数学模型。 第二步:线性化如果所建立的模型是非线性的,需要通过适当的数学 变换将其线性化。 第三步:计算参数,首先根据线性模型计算出参数,再根据第二步的 线性化公式计算出原始的模型参数。 第四步:拟合效果评价,对拟合效果做出定量评价。 2.3 最小二乘法的另一种数学表达 二参数的线性最小二乘法以线性模型 拟合实验数据yabx 以最小二乘法的思想有(,)1,23,)ixyn (2-35)21(,)min niiiiab a,b 在 i 的极小点满足 (2-36)1 20niiiiiiyabxab 由上式第一式得 (2-37)110 nniiiyabx 即 (2-38)11 nniiy 由(2-36)第二式得 21110 nnniiixyabx (2-39) 第 2 章 数据拟合的基本理论 19 经整理得 (2-40)12 ()niiiiixyb 其中 ,1 nix1niy 由上述各式可由实验数据计算出 a,b,即得到模型方程 。yabx 若以 代表 ,令 称为 的离差, 的离差平方和记为 ,即1 niiiixl (2-41)2221()()xiiil n 同样将 的离差平方和记为 ,即iyy (2-42)222()()xi iily 若将 的离差与 的离差的乘积记为 ,即ixi xl (2-43)1()()xyiiiiil xyn 则有 (2-44)xyabl 上述思路推广到多元线性回归。多元线性函数写成 (2-45)01 mybx 数据点为 (2-46)12(,),2,iiiyn 参数求解的正规方程组为 (2-47) 12112212mymmyllblblll 20 (2-48)120 mbyxbx 其中 (2-49)11,nnikik (2-50)1 1()()n nijijiikjkikjikjklxxx (2-51)11 nniiyikkikikklyyy 2.4 本章小结 本章阐述了数据拟合的基本理论及其方法。用最小二乘法论理引出了 线性以及非线性曲线拟合的方法,并推广至多元拟合。分别详细介绍了各 种方法的理论及其公式。并分别对曲线拟合以及多元拟合的求解的基本步 骤做出了归纳。通过本章可以掌握数据拟合的基本方法以及理论基础。 第 3 章 数据拟合应用实例 21 第 3 章 数据拟合应用实例 3.1 数据拟合在物理实验中的应用 在物理实验 17中,我们通过观测得到的数据,一般都存在着误差。此 时如果要求近似函数通过全部测量的已知点,就相当于保留了全部的数据 误差,显然这是不合理的。我们使用最小二乘法来拟合实验数据可以得到 很好的效果。 3.1.1 多项式拟合 现在有一为了测量线性电阻元件伏安特性的物理实验。实验数据见表 3-1。 表3-1 测量线性电阻元件伏安特性的实验数据i/aii/viui/aii/viu 1 0 0 6 0.049 5 2 0.009 1 7 o.061 6 3 0.020 2 8 0.073 7 4 0.030 3 9 0.082 8 5 0.039 4 10 0.092 9 由于试验的目的是研究关于线性电阻的伏安特性,所以设拟合多项式 为 (3-1)01/v/auai 将数据表代入数据拟合的基本公式里,得此实验的正则方程组 011.45 29.0= 它的解为 。因此这一组数据的最小二乘法拟合为01.865,97a/867/i 3.1.2 指数拟合 22 现在有一为测量电容器放电过程特性的实验因为数据点(,)1,2)ixyn 分布近似于指数曲线,我们设放电过程中电容上的电压变化公式为: (3-2)/trcue 测得 和t的数据如表3-2:cu 表3-2 测量电容器放电过程特性的实验数据i/sit/ivi/sit/iuv 1 0.0 9.99 8 4.0 4.39 2 1.0 8.19 9 4.5 4.07 3 1.5 7.37 10 5.0 3.68 4 2.0 6.81 11 11.5 1.003 5 2.5 5.99 12 23.0 0.101 6 3.0 5.49 13 25.0 0.07 7 3.5 5.01 由于电压变化公式属于非线性求解的问题,所以,我们对公式式两端 取对数,则有: (3-3)ln/lncutr 等式的右端为线性函数数据组 的分布基本近似于直(,l)1,2)ii 线。所以我们先求出数据组 的最小二乘拟合直线,然后再将之转换it 为指数的形式。我们对表3-2中 取对数,得到数据表3-3。/v 将表3-3 数据代入数据拟合最小二乘法的基本公式中,得正则方程组 01386.52.876.aa 其解为 。因此 ,得电容电压公式近似012.97,.a.94e 为 0.18tcu 利用最最小二乘法来分析物理实验里所测得的实验数据,我们可以根 据测得的数据拟合出近似函数,并得到比较精确的解。在工程实际问题中, 第 3 章 数据拟合应用实例 23 由于各个点的观测误差不同,我们还常常引入加权方差。总之,在实际的 工程问题中,我们应当采用尽可能多的方法去分析数据,使得实验更有意 义。 表3-3 对表3-2 的实验数据取对数 i /sitln(/v)iui /sitln(/v)iu 1 0.0 2.300 8 4.0 1.479 2 1.0 2.103 9 4.5 1.404 3 1.5 1.997 10 5.0 1.303 4 2.0 1.918 11 11.5 0.003 5 2.5 1.790 12 23.0 -2.293 6 3.0 1.703 13 25.0 -2.659 7 3.5 1.610 3.2 数据拟合在塔机起重量监测系统中的应用 起重量限制器 18是用来保护塔机的重要装置之一,是用于防止因超重 而引起起升电机、传动机构、钢丝绳的损坏。但是它只能在极限的状态下 保护塔机起升机构不会受到损坏,不能够显示起重量值,因此,司机在操 作过程中不了解塔机每次起吊重量的具体状况。为了进一步提高塔机的安 全性能和工作效率,增加塔机起重量在线监测装置非常重要,实时准确地 测量出起重量是在线监测的关键。 3.2.1 工程原理 在实时临测系统中,在原有起重量限制器的基础上加装了拉力传感器, 传感器所测量的拉杆拉力q与钢丝绳的张力f之间存在着一定的函数关系, 起重量增加,拉杆拉力也相应增加,因此可通过间接测量拉杆拉力的方法 先测出钢丝绳的张力,然后根据吊钩处的钢丝绳倍率关系计算出实际起重 量,从而在拉杆拉力与塔机起重量之间建立起函数关系。 24 软测量模型:两个具钉因果关系的相关物理量在整个测量范围内的特 性可用幂级数多项式描述: (3-4)2301 iyaxax 第 3 章 数据拟合应用实例 25 3.2.2 应用实例 由于塔机起重量g与钢丝绳张力f之间有确定的函数关系(倍率关系), 在实际应用中,以塔机起重量g代替钢丝绳张力f作为输出样本,以拉杆拉 力q作为输入样本。塔机qtz63最大额定起重量为 ,分别以60kgeg 、 、 为起重量,测量相应的拉力传感器拉力q ,以获取0.1e.2ee 样本表3-4 。 表3-4 实测样本、估算值及相对误差 样本 拉杆拉力 q/kn 起重量g/kg 起重量估算 g/kg 相对误差 /% 1 0 0 0.4 基准点 2 0.45 600 60.9 0.15 3 0.94 1200 1206.8 0.57 4 1.44 1800 1776.9 1.30 5 2.10 2400 2460.7 2.47 6 2.61 3000 2940.0 2.04 7 3.36 3600 3575.5 0.69 8 4.27 4200 4250.9 1.20 9 5.16 4800 4828.6 0.59 10 6.05 5400 5344.1 1.05 11 7.33 6000 6015.2 0.25 画起重量g和拉力q的散点图,根据散点图的走势确定拟合多项式的阶 次n=3。运用matlab多项式拟合指 令: ,其中x 为拉杆5polyfit(,)an 拉力,y为起重量, a为所求多项式系数。经计算得:a= 4.59 -110.41 1383.2 043 所求拟合多项式为(3-5) 式。 (3-5)2304318-041 59gqlq 根据所求拟合多项式估算起重最值见表l,样本散点和拟合曲线如图 3 所示:gb5l44 94规定:起重机应安装起重量限制器,对最大起重量大于 26 6t的起重机如设有最示装置,则其数值误差不得大于指示值的 5 。拟合 曲线误差能够满足国标要求。 塔机起重量监测中存在的非线性问题中,采数据拟合理沦,建立了起 重 g和拉杆力q之间的函数关系式,使塔机起重量监测在plc中得以实现。 从实例可见,该方法具有如下优点: (1)计算结果惟一,计算量小,便于在plc、单片机等硬件设备上实现; (2)可精确、方便地实现起重量的实时监测; (3)当钢丝绳倍率改变时,只需调整对应多项式的系数,不必改动其它 硬件设施; (4)保留了原有起重量限制器中的超重预警开关和超重报警开关,能够 实现起重量预警和报警的双重保护。 图3-1 样本数据与拟合曲线图 3.3 数据拟合在翅片管传热性能试验中的应用 对于换热器的传热性能试验 19,往往需要得出换热面某一侧的对流换 热系数及其换热规律,这就相应地需要根据换热器类型采用合适的试验方 第 3 章 数据拟合应用实例 27 法。一些学者针对具体的试件采用了各种形式的对流换热系数试验方法, 但都存在各自的应用局限性。曲线拟合法也是经常用到的一种方法,但常 规的曲线拟合法或者存在较多的限定条件,或者拟合结果不太准确。本文 介绍的新型曲线拟合法限定条件少,拟合结果准确,试验方便,是一种行 之有效的对流换热系数的试验方法。 3.3.1 工程原理 两种流体通过平壁进行热量交换,传热热阻方程可表示如下 (3-6)12ka 通过试验可得到待测一侧流体 1 的对流换热系数 a1 及其规律性试验 时,可保持非待测一侧流体 2 的流速和定性温度基本不变,则这一侧的对 流换热系数 a2 基本不变,由于导热热阻 / 基本是不变的,可令 (3-7)2a 改变流体 1 的流速 v,保持定性温度基本不变,则对流换热系数 a1 与 流速 v 的关系可表示为 a1=cwm (3-8) 式(3-6)成为如下形式 (3-9)1/kabv 式(3-7)式(3-9)中 a、 b、 m 是 3 个常数,b= l/c通过改变流速 v,可相应 测得对应的传热系数 k,从而得到若干组数据(v 1,k 1)、(v 2,k 2)、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年星巴克加盟技术培训合同
- 2024年产品拍摄委托协议3篇
- 2024年度电力设施运维安全责任二零二四版协议书范本2篇
- 2024他项权证借款额度调整至低于原合同额度的合同修订书3篇
- 2024年度人工智能技术研发中心劳务合作书3篇
- 2024年度茶楼员工培训与薪酬管理协议3篇
- 2024年度农产品批发市场买卖与冷链运输合同3篇
- 2024年度人力资源派遣与劳动关系维护服务合同3篇
- 2024年度股权投资合同正规范本2篇
- 2024年度保密协议范本下载2篇
- 结核病的诊断流程图解
- 工程力学知到智慧树章节测试课后答案2024年秋湖南工学院
- 广东省广州市越秀区2023-2024学年八年级上学期期末道德与法治试题(含答案)
- 第七届重庆市青少年科学素养大赛考试题库(含答案)
- 地理2024-2025学年人教版七年级上册地理知识点
- 四大名著之西游记经典解读28
- 2024年城市园林苗木移植合同范例
- 医院培训课件:《新进护士职业规划》
- 北京市海淀区2023-2024学年高二上学期期末考试 英语 含答案
- 国开2024年秋《大数据技术概论》形考作业1-4答案
- 技能人才评价新职业考评员培训在线考试(四川省)
评论
0/150
提交评论