2014年武汉初三四月调考数学试卷分析及备考建议_第1页
2014年武汉初三四月调考数学试卷分析及备考建议_第2页
2014年武汉初三四月调考数学试卷分析及备考建议_第3页
2014年武汉初三四月调考数学试卷分析及备考建议_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年武汉初三四月调考数学试卷分析及备考建议 初三四月调考数学考试结束了,显然本次四月调考试卷整体难度不太大,与元调相比可以 算是简单了,一、试卷考点分布 试卷 初三四月调考项 目 题 类 题号 考察内容 涉及考点 考点难度 识记理解 基础运用 综合运用 1 有理数比较大小 有理数 2 二次根式有意义的条件 二次根式、解不等式 3 实数运算 实数的基本运算 4 数据分析 平均数众数中位数 5 整式运算 整式的加减乘除 6 位似 坐标系内位似 7 三视图 三视图 8 数据与统计 饼状图 9 找规律 幂的规律 选 择 题 10 圆 隐圆、动点、最值 11 因式分解 因式分解 12 科学记数法 科学记数法 13 古典概型 概率 14 一次函数图像信息题 进出水类应用题 15 反比例函数 K 的几何意义 填 空 题 16 三角形内几何综合 等边三角形、 角平分线类相似 17 解分式方程 注意要检验 18 一次函数与不等式综合 一次函数、不等式 19 简单全等证明 全等三角形 20 旋转作图 旋转 21 概率与统计综合 概率与统计 22 圆的证明和计算 圆、勾股定理、三角函数 + 23 二次函数应用题 表格类应用题,考查最值 + 24 相似 三角形中动点与相似 + 解 答 题 25 二次函数代几综合 二次函数、相似、中点坐标 + 二、试卷分析 本次试卷体现了四月调考为中考指导备考方向,并为考生提供实战练兵机会的功能。因而整体难度偏易, 但要拿高分仍需要扎实的基本功。 选择题部分,第 1 题到第 9 题均为基础题。 第 10 题分析 2 今年四调的第 10 题如我们所预料的一样,考察圆中的“动点与最值问题” 。动点与最值问题往往呈现出三 种出题方向: 1、圆上一动点到圆外一定点的最大值或最小值问题; 2、直线外一定点到直线上一动点的最小值; 3、根据一个角的三角函数值来判断线段的最值问题。 以上三种出题方向均可以结合圆的知识点来进行综合考察,也就是我们常说的“圆中的动点与最值问题” 。 纵观 2014 年四调数学选择题压轴,不难发现这道题的出题方式仍属于我们上面总结的第二或第三种情形。 思考这道题可以从两个维度寻找切入点: 1、直线外一点到直线上的距离。 由题意可知,ABC 为直角三角形,O 点为斜边的中点。不难想到,过 O 做 BC 边的垂线段,OM 垂直 AB,交 AB 于点 M。这样,我们可以由中位线性质得到,欲求 BC 的最大值,就是求 OM 的最大值。 那么 OM 作为点 O 到射线 AP 上的距离,在何种情形下会产生最大值呢?我们可以看到, A 点是动点, AP 便是运动的射线。此外,有一个很重要的细节值得注意,即在通常情况下,P、M 、O 三点可构成直角 三角形,OP 为斜边, OM 为直角边,而且点 M 会随着射线 AP 的位置运动而发生运动,当 M 点与 P 点重 合时,OM 由直角边变成了斜边,这个时候 OM 为最大值,即 BC 为最大值。在此分析的基础上,结合题 意,不难算出答案为。 2、根据一个角的三角函数值来判断线段的最值问题。 如果有同学觉得上面那种方面难以想到的话,不妨尝试下另外一种思路,即通过三角函数值判断线段的最 值情况。 同样由题意可知,在 RtABC 中,斜边 AC 为定值 6,BC 为变量。那么根据锐角三角函数可知, BC 的变化情况由 A 的正弦值来决定。即当A 最大时,BC 为最大。那么这时问题便转化为“在什么情 况下,A 为最大?” 我们可以通过 OP 为定长分析出 P 点在以 O 为圆心,OP 长为半径的圆中,将这个圆画出来后,我们 可以发现原图就有一组以 O 为圆心的同心圆。那么,A、B 点在外圆上,P 点在内圆上,且 A、P、B 三点 共线,做出图像可知,可将问题转化为“线段 AB 与内圆 O 的位置关系” 。在此基础上,当 AB 与内圆 O 相切时,A 最大。这时 OP 恰好为 RtABC 的中位线, 。 填空题部分,第 11 题到第 14 题均为基础题。 第 15 题分析 本题主要考察的是反比例函数的基本知识点,四调考试主要考根据题目给出的已知条件设点坐标, 根据点的坐标求距离与勾股定理结合达到求题中未知数的目的,今年该题考察的比较简单,属于学生必须 拿到分得题! 第 16 题分析 一直以来,本题的出题背景都是四边形。这次则采用等边三角形的背景。辅助线很容易就可以想到 做出三线合一的高线 AH,进而在三角形 ACH 中得到非常常见的角平分线类相似的经典推论: HD: DC=AH:AC.进而得到我们所要求的 BD:CD.这道题难度偏易,解题方法除了以上方法还有多种方法。 相信基础较好的学生都可以顺利得到答案。 解答题部分,17-21 题为基础题。 第 22 题分析 考法比较常规,依然是圆中的计算和证明。第一问比较基础,考查了切线长定理,通过角度关系来 证明平行关系。第二问的难度适中,略低于去年的四月调考和今年的元月调考。P 三角函数值的给出, 就指明了解题的方向-把P 放在直角三角形中,所以很自然的由 A 点向 PB 做出垂线,之后利用切线长 定理推导线段的关系,通过弦切角的把C 转化到ABD 即可求解。总的来说,这次的 22 题偏简单,弦 切角的概念虽然初中不会学习,但是平时的练习接触很多,应该能够做到熟练应用。 第 23 题分析 本题考查了二次函数的应用,主要利用了待定系数法求一次函数解析式,二次函数的最值问题,以 及利用二次函数的最值求实际问题的应用,仔细分析图表数据并熟练掌握二次函数的性质是解题的关键, 该题类型与去年中考如出一辙 第 24 题分析 难度对比:与去年四调和中考的 24 题相比,把问题分解的比较细,实际降低了难度。 考察方式:多动点,运动时间。 (主要方法:把各边用 t 表示出来) 考点:三角形相似,角平分线性质 首先第(1)问考察的是满足四边形是平行四边特例,那很自然应该想到平行四边形对边相等且平行 的性质,再把对应边用 t 表示,很容易计算出 t 的值。主要还是为(2) (3)做铺垫,后面可以参考该做法 第(2)证明角相等,无非是证明三角形全等或相似,但是题目没有明确各边长度,再联系运动过 程中有 DE/BC 不变,应该联想到相似中的字型,那么就可以考虑证明和相似来证明 角相等,即证:,而已知,那么等价于 3 :,这就正是我们型相似(和相似)的结论。 第()问有两小问,第一问根据要证明结论,就可以借鉴() ()中的字型相似, 可得出:,而那么就只需证明:,到这里就 回到前面的相似了,即和 相似,和相似,所以: ,从而 :得证。 第二小问就可以直接用第一问中的结论,再进一步就是, ,而(与八年级中点四边形模型相同) ,那么就可得到平分 ,: : :, (角平分线的基本性质,当然也可以用相似推导) 。 第 25 题分析 1)因为过第一象限定点 P,坐标与 a 的值无关,所以可以将抛物线的解析式化简成 y=a(x2-4)+4 的 形式,所以可以得到 x2-4=0,则 x=2 或-2(舍) ,所以得到 P(2,4). 2)由 PC=PD,可以得到 PCD=PDC,然后将角度转化到两个角的正切值相等 (tan PCD=tan PDC),然后就可以用 A、B、P 三个点的坐标来表示,设 A(x1,y1),B(x2,y2),P(2,4).表 示形式如下:(4-y1)/(2-x1)= ( y2-4)/(x2-2) 然后将 y1=2x1+b y2=2x2+b 代入到上式,并化简就可以得到: 4x1x2+(b-8)(x1+x2)-4b+16=0, 看到这种形式想必很多学生都知道下面该怎么做了,就是根与系数的关系,于是我们将抛物线和直 线 AB 的解析式联立,可以得到 x1+x2=2/a, x1x2=(-4a+4-b)/a ,代入 4x1x2+(b-8)(x1+x2)-4b+16=0 中,就可以计算出 a=-0.5。 3)设 Q(x,y),因为 M(2,0)运用中点公式可以得到 N(2x-2,2y),将 N(2x-2,2y)代入抛物线 y=- x2+8(因为 a=-1) ,即可求出 C2 的解析式:y=-2x2+4x+2 所用知识点: 1)P 点坐标与 a 无关,也就是将 a 提出来,其余部分为 0,就可以求出 P 点坐标。 2)由线段相等转到角相等,再转到正切值相等。 用两点的坐标表示角的正切值。 用根与系数的关系来计算。 3)平面直角坐标系中的中点公式,以及点的轨迹求法。 三、试卷特点 所有的题都是以课本知识为轴,考查基本概念及基础方法的掌握熟练程度和灵活运用能力,试卷中 涉及到的知识点都是基础内容,必须识记。这整个试卷和三月份教科院出台的 2014 中考数学考纲基本一 致,没有任何一题的题型超出我们的预料,除了位似的题型从样题的第三题后移到第六题。但对整体没有 影响。 整个选填没有难题,10、16 都比较平易。最值问题出现在第 10 题圆的背景中,16 题用简易的相似 模型就可以顺利解决。解答题中,一向作为试卷分水岭的 22 题难度较今年元月调考卷也有所降低,辅助 线虽多,但都是可以自然想到的,甚至可以说是我们初学切线长定理就会接触的题型。23 题和去年中考 23 题基本一样,相信大家都非常熟悉。第 24 题(2) (3)问,第 25 题第(2)问难度稍大。但第三问比 较容易。 总体来说,此次四月调考难度偏易,考查学生基本功是否扎实。 四、学习建议 四调一出,中考现形。四月调考是我们研究今年中考题型的最佳范本。在这次考试中,一定要总结 归纳考试中体现出的知识漏洞,进一步摸清考点,在最后的中考备考冲刺期找准方向,查漏补缺。扫荡失 分点,强化薄弱点,攻克重难点。将前两轮复习中长期积累的量变转化为第三轮复习中的质变! 初三四月调考数学指导:试题检验方法 每年的初三四月调考是武汉中考的风向标,四月调考不仅能够真实的反映出自己的复习效果,还能 清楚的看到自己的不足之处,方便最后的冲刺,为了帮助大家更好的备考本次考试,下面为大家介绍四调 数学备考的方法:试题检验八大方法,供大家参考! 一、直截了当检验法 直接检验法就是围绕原来的解题方法,针对求解的过程及相关结论进行核对、查校、验算等。为配 合检查,首先应正确使用草稿纸。建议大家将草稿纸分块使用,按顺序演算,并标上题号,方便检查对照。 二、代入(题目原式)法 用所得结论代入原命题进行计算。比如解方程一类的题目,可以把得到的 x、y 的值代入原方程进行 计算,看方程两边是否相等。对解恒等式、不等式一类题目,把结果、允许值范围代入原式看是否符合题 设。对解因式分解的题目可以把得到的因式相乘展开,看是否得到原式,等等。 三、一题多解法 多种解法比一种解法更使人放心,也更容易发现存在问题。当一道题解完后,进行再思考,往往会 闪出好念头,获得好方法,用新颖的方法再解后,有错则纠,无错则形成双保险。可以分别用代数法、几 4 何法、三角法得出结果,这种检验方法不但能准确地检验计算结果是否正确,还能加强知识间的联系,增 强分析问题的能力,特别是当仅有的一种解法比较冗长、曲折,自己感到把握不大时,最好探求一下其它 的解法,以便相互比较和印证。 四、实际问题经验检验法 利用人们的生活经验所提供的信息进行估计,是简便易行的检验方法。 一般说来,命题是以客观实物的数量指标为背景的,所以,在通常情况下,如果答案不符合生活实 际经验,可以断定计算必有错误,需重新检查每一步解答。 例: 小明骑自行车的速度是他步行速度的 4 倍,他骑车到 15 公里外的奶奶家花了 45 分钟,问:小明步 行的速度是多少米每秒? 解:小明骑车速度为 154560=20 所以他步行的速度为 204=5 米/ 秒() 经生活检验,人类的步行速度般在 0.5 米2.0 米左右,答案量纲上错了。 小明的步行速度应为:5 公里/小时=51000 米/3600 秒=25/18 米/秒 1.39 米/秒 五、对称检验法 对称,是数学美的一个基本内容,它反映了数学对象之间内在的联系,从具有某种对称性的对象推 得的结果,也应该具有相应的对称性,否则,就可以怀疑所得结果的正确性。对称检验,就是利用了这一 特性。 六、基本概念检验法 基本概念、法则、公式是同学们复习时最容易忽视的,因此在解题时极易发生概念性错误,所以, 概念检验法是一种对症下药的方法。 七、条件检验法 (1)考虑是否利用了所有的已知条件。如果完成了对某个问题的解答,却又没有用或未用完所给的全 部条件,那么必须引起我们警惕和深思。 (2)是否考虑了题中的隐蔽条件。解题中的错误常常来自忽视隐于题设的背后隐含条件。因此,进行 条件检验时,要在观察和分析题中的隐含条件上多下功夫。 例: 一个三角形的三边都是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论