版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等腰三角形的判定,一、复习:,1、等腰三角形的性质定理是什么?,等腰三角形的两个底角相等。 (可以简称:等边对等角),2、这个定理的逆命题是什么?,如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。,3、这个命题正确吗?你能证明吗?,导入新课,如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得A=B如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系? 现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系? 为什么它们所对的边相等呢?同
2、学们思考一下,给出一个简单的证明,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系? 现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系? 为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明,已知:ABC中,B=C,求证:AB=AC,证明:,作BAC的平分线AD,在 BAD和 CAD中,,1=2, B=C, AD=AD, BAD CAD(AAS),AB=AC(全等三角形的对应边 相等),1,2,等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),注意:使用“等边对等角”前提是在同一个
3、三角形中,例2 求证:如果三角形一个外角的平分线平行于 三角形的一边,那么这个三角形是等腰三角形。,已知: 如图,CAE是 ABC的外角,1=2,ADBC。,求证:AB=AC,分析:,从求证看:要证AB=AC,需证B=C,,从已知看:因为1=2,ADBC,可以找出B,C与的关系。,证明:,ADBC,,1=B(两直线平行, 同位角相等),2=C(两直线平行,内错角相等)。,1=2,,B=C,,AB=AC(等角对等边)。,D,巩固等腰三角形的判定定理,例3已知等腰三角形底边长为a ,底边上的高的 长为h ,求作这个等腰三角形.,作法: (1)作线段AB =a; (2)作线段AB 的垂直平分线MN,
4、与 AB 相交于点D; (3)在MN上取一点C,使DC =h; (4)连接AC,BC,则ABC 就是所 求作的等腰三角形.,练习1,证明: AD BC ADB=DBC ABD=DBC ABD=ADB AB=AD,例2如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?,这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题,解:选取比例尺为1:100(即为1cm代表1m) (1)作线段DE=4cm; (2)作线段DE的垂直平分线MN,与DE交于点B; (3)在MN上截取BC=2.5cm; (4)连接CD、CE,CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长,练习2,1=720 2=360,等腰三角形有:ABC, ABD, BCD,练习3,2如图,把一张矩形的纸沿对角线折叠重合部分是一个等腰三角形吗?为什么?,答案:是等腰三角形因为,如图可证1=2,练习4,证明:,OA=OB,,A=B(等边对等角),又ABDC,,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村生活污水治理时间进度安排方案
- 名著读后感(集锦15篇)
- 初中高知识复习测试卷
- 2024安全管理技术竞赛(单选)练习卷含答案
- 专题11 变量与函数(七大类型)(题型专练)(解析版)
- 2023中小学学校防范电信网络诈骗反电诈工作方案
- 专题七自媒体营销 (课件)职教高考电子商务专业《网络营销实务》
- 公考歧义句辨析题分类解法语法结构法
- 高一英语综合语法测试
- 2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题
- GB/T 43050-2023血液透析和相关治疗用液体的制备和质量管理通用要求
- 介绍辽宁朝阳的PPT模板
- 高三统编版历史一轮复习备考策略
- 卓越的销售经理的团队管理
- 医德医风考核评价表
- 大凌河朝阳城区广场、旅游景区人工湿地工程设计
- 报价单-带图报价单
- 上海地铁隧道工程盾构法施工技术二
- 中国少先锋队章程(修正案)范本
- 化工自动化基础
- 2023-2023年厦门市酒店业发展现状及未来发展趋势分析研究报告
评论
0/150
提交评论