下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、与圆相关的基本知识和计算一、知识梳理:(一):圆及圆的有关概念1. 圆:到顶点的距离等于定长的点的集合叫做圆;2. 弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3. 弦:连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径,它是圆的最长的弦;4. 等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5. 圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;(二)圆的有关性质:1. 对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称
2、图形,其对称轴是直径所在的直线;2. 垂径定理及其推论:(1)、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;(2)、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;(2)推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等。在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等。4.圆周角与圆心角的关系(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;(2)推论:半圆(或直径)所对的圆周角是直角,的圆周角所对
3、的弦是直径;5.圆内接四边形对角互补。(3) 点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系(1)dr点在圆外;(2)d=r点在圆上;(3)dr点在圆内2、确定圆的条件:不在同一直线上的三个点确定一个圆(4) 直线与圆的位置关系1、(1)直线与圆的位置关系有关概念相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点相离,当直线和圆没有公共点时,叫做直线和圆相离(2)用数量关系判断直线与圆的位置关系如果O的半径为r,圆心O
4、到直线l的距离为d,那么:(1)直线l和O相交dr(如图(1)所示);(2)直线l和O相切d=r(如图(2)所示);(3)直线l和O相离dr(如图(3)所示)2、切线(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线(2)切线的性质:圆的切线垂直于过切点的半径(3)切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长(4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等这一点和圆心的连线平分这两条切线的夹角(五)三角形的外接圆和内切圆1、三角形的外接圆(1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆三角形的外心:外接圆的圆心是三角
5、形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形 (2)三角形外心的性质:三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合2、三角形的内切圆与三角形的内心与三角形各边都相切的圆叫做三角形的内切圆三角形内切圆的圆心叫做三角形的内心这个三角形叫做圆的外切三角形三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等(六):圆的有关计算(一)正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心;如果一个正n边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;正n边形的中心角等于外角等于;(二) 弧长与扇形面积1、在半径为R的圆中,圆心角所对的弧长l=;2、在半径为R的圆中,圆心角为的扇形面积=;半径为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程招标合同范本
- 2024年度云服务租赁合同
- 公司春节晚会活动策划3篇
- 2024年度智能家居安防监控系统安装与维护合同
- 2024年商业物业管理合同
- 2024双方关于环保设备的买卖合同
- 2024年废物分类与回收协议
- 2024年度CFG桩基工程项目管理合同
- 2024年度产品质量保证与维修服务合同
- 2024年夫妻双方关于房产买卖及产权分配协议
- 2024版人教版英语初一上单词默写单
- 化学实验室安全智慧树知到期末考试答案2024年
- 经典房地产营销策划培训(全)
- 工人入场安全教育课件
- 【川教版】《生命 生态 安全》二年级上册第12课 少点儿马虎 多点儿收获 课件
- 人教版数学四年级上册第五单元 《平行四边形和梯形》 大单元作业设计
- 静配中心差错预防
- 送教上门体育、健康教案教学内容
- 高夫品牌市场分析报告
- 职业规划书-数字化设计与制造技术
- 国家临床重点专科建设项目申报书
评论
0/150
提交评论