高考数学复习计数原理、概率、随机变量及其分布第5节古典概型课件理新人教B版.pptx_第1页
高考数学复习计数原理、概率、随机变量及其分布第5节古典概型课件理新人教B版.pptx_第2页
高考数学复习计数原理、概率、随机变量及其分布第5节古典概型课件理新人教B版.pptx_第3页
高考数学复习计数原理、概率、随机变量及其分布第5节古典概型课件理新人教B版.pptx_第4页
高考数学复习计数原理、概率、随机变量及其分布第5节古典概型课件理新人教B版.pptx_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第5节古典概型,最新考纲1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.,1.基本事件的特点 (1)任何两个基本事件是_的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有_,每次试验只出现其中的一个结果. (2)每一个试验结果出现的可能性_.,知 识 梳 理,互斥,有限个,相同,常用结论与微点提醒 1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法. 2.概率的一般加法公式P(AB)P(A)P(B)P

2、(AB)中,易忽视只有当AB,即A,B互斥时,P(AB)P(A)P(B),此时P(AB)0.,1.思考辨析(在括号内打“”或“”) (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.() (2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.() (3)从3,2,1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.() (4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.(),诊 断 自 测,解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对

3、于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),应利用几何概型求概率,所以(4)不正确. 答案(1)(2)(3)(4),答案B,答案B,答案C,答案(1)C(2)B,规律方法1.计算古典概型事件的概率可分三步:(1)计算基本事件总个数n; (2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率P. 2.(1)用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏. (2)利用排列、组合计算基本事件时,一定要分清是否有序,并重视两个计数原理的灵活应用.,答案(1)B(2)A,考点二复杂的古典概型的概率(典例迁移)

4、【例2】 (经典母题)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队. (1)求A中学至少有1名学生入选代表队的概率; (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.,【迁移探究1】 求A中学至多有1人入选代表队的概率.,【迁移探究2】 求B中学入选代表队的女生人数多于男生人数的概率.,规律方法1.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时

5、将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解. 2.注意区别排列与组合,以及计数原理的正确使用.,考点三古典概型与统计知识的交汇问题 【例3】 (2018黄冈质检)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:,若抽取学生n人,成绩分为A(优秀),B(良好),C(及格)三个等级,设x,y分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有14401064(人),数学成绩为B等级且物理成绩为C等级的共有8人.已知x与y均为A等级的概率是0.07. (1)设在该样本中,数学成绩的优秀率是30%,求a,b的值; (2)已知a7,b6,求数学成绩为A等级的人数比C等级的人数多的概率.,规律方法求解古典概型与统计交汇问题的思路 (1)依据题目的直接描述或频率分布表、频率分布直方图、茎叶图等统计图表给出的信息,提炼需要的信息. (2)进行统计与古典概型概率的正确计算.,【训练3】 从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图所示).由图中数据可知体重的平均值为_kg;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论