版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绝对值不等式适用学科高中数学适用年级高中三年级适用区域全国通用课时时长(分钟)60分钟知识点不等式的性质、基本不等式、绝对值不等式的证明、柯西不等式教学目标学会推导并掌握均值不等式定理;了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简单的应用;会证明二维柯西不等式教学重点绝对值不等式的证明、基本不等式的应用教学难点柯西不等式的应用教学过程一、课堂导入不等关系是自然界中存在着的基本数学关系。列子汤问中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,
2、而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。而且,不等式在数学研究中也起着相当重要的作用。二、复习预习1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质:、如果ab,那么ba,如果bb。(对称性)、如果ab,且bc,那么ac,即ab,bcac。、如
3、果ab,那么a+cb+c,即aba+cb+c。推论:如果ab,且cd,那么a+cb+d即ab, cd a+cb+d、如果ab,且c0,那么acbc;如果ab,且c0,那么acb 0,那么 (nN,且n1)、如果ab 0,那么 (nN,且n1)。三、知识讲解考点/易错点1定理1:如果a、bR,那么a 2b 2 2ab(当且仅当ab时取“”号)证明:a 2b 22ab(ab)2 当ab时,(ab)20,当ab时,(ab)20所以,(ab)20 即a 2b 2 2ab由上面的结论,我们又可得到定理2(基本不等式):如果a,b是正数,那么 (当且仅当ab时取“”号)证明:()2()22a b2 ,即
4、显然,当且仅当ab时,说明:1)我们称为a,b的算术平均数,称为a,b的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.2)a 2b 22ab和成立的条件是不同的:前者只要求a,b都是实数,而后者要求a,b都是正数.考点/易错点2定理3:如果,那么。当且仅当时,等号成立。推广: 。当且仅当时,等号成立。考点/易错点3定理 如果是实数,则(当且仅当时,等号成立.)(1)若把换为向量情形又怎样呢? 根据定理1,有,就是,。 所以,。定理(绝对值三角形不等式)如果是实数,则注:当为复数或向量时结论也成立.推论1:推论2:如果是实数,那么,当且仅当时,等号成立.考点/易
5、错点4关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。下面分别就这两类问题展开探讨。1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。主要的依据是绝对值的几何意义.2、含有绝对值的不等式有两种基本的类型。第一种类型:设a为正数。根据绝对值的意义,不等式的解集是,它的几何意义就是数轴上到原点的距离小于a的点的集合是开区间(a,a),如图所示。 图1-1 如果给定的不等式符合上述形式,就可以直接利用它的结果来解。第二种类型:设a为正数。根据绝对值的意义,不等式的解集是或,它的几何意义就是数轴上到原点的距离大于a的点
6、的集合是两个开区间的并集。如图1-2所示。 图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。3、和型不等式的解法。;4、和型不等式的解法。可通过零点分区间法或利用绝对值的几何意义进行求解(1)零点分区间法的一般步骤令每个绝对值符号的代数式为零,并求出相应的根;将这些根按从小到大排列,把实数集分为若干个区间;由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;取各个不等式解集的并集就是原不等式的解集(2)利用绝对值的几何意义由于|xa|xb|与|xa|xb|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|xa|xb|c(c0)或|x
7、a|xb|c(c0)的不等式,利用绝对值的几何意义求解更直观5|f(x)|g(x),|f(x)|g(x)(g(x)0)型不等式的解法(1)|f(x)|g(x)f(x)g(x)或f(x)g(x)(2)|f(x)|g(x)g(x)f(x)g(x)提醒解含绝对值号的不等式要注意分类讨论思想的应用考点/易错点5柯西不等式(1)设a,b,c,d均为实数,则(a2b2)(c2d2)(acbd)2,当且仅当adbc时等号成立(2)设a1,a2,a3,an,b1,b2,b3,bn是实数,则(aaa)(bbb)(a1b1a2b2anbn)2,当且仅当bi0(i1,2,n)或存在一个数k,使得aikbi(i1,2
8、,n)时,等号成立(3)柯西不等式的向量形式:设,是两个向量,则|,当且仅当是零向量,或存在实数k,使k时,等号成立四、例题精析【例题1】1不等式的解集是 A. B. C. D. 【答案】B【解析】由绝对值的几何意义,得表示数轴上的点到点的距离之和,易知,当或时,;所以的解集为.【例题2】已知函数(1)解不等式; (2)对任意,都有成立,求实数的取值范围【答案】(1)6;(2)-2或4;【解析】(1)-2,当时,, 即,;当时,,即,;当时,, 即, 16综上,|6 (2) 函数的图像如图所示:43xy令,表示直线的纵截距,当直线过(1,3)点时,;当-2,即-2时成立; 当,即时,令, 得,
9、2+,即4时成立,综上-2或4。【例题3】(1)已知,都是正数,且,求证:;(2)已知,都是正数,求证:【答案】(1)详见解析;(2)详见解析【解析】(1),都是正数,又,于是,即,。(2),同理,相加得,从而,由,都是正数,得,因此【例题4】已知关于的不等式,其解集为.()求的值;()若,均为正实数,且满足,求的最小值.【答案】()3;()【解析】()不等式可化为,即,其解集为, ,. ()由()知,(方法一:利用基本不等式),的最小值为.(方法二:利用柯西不等式),的最小值为.(方法三:消元法求二次函数的最值),的最小值为. 【例题5】设函数。()解不等式;()已知关于x的不等式恒成立,求实数a的取值范围。【答案】()()【解析】()由题意得:,所以的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《材料成形设计综合实验》实验教学大纲
- 经济贸易毕业论文:中国OFDI发展史
- 玉溪师范学院《女性社会工作》2023-2024学年第一学期期末试卷
- 2024年磷铁项目评估分析报告
- 《机械零件的三坐标检测》课程框架
- 《开发和利用资源促进园本课程建设》课题方案
- 采购合同诉讼费收费标准
- 爆破监理延期合同
- 糖尿病新生儿护理课件
- 07 C简谐运动的描述 中档版2025新课改-高中物理-选修第1册(21讲)
- 2024-2030年中国农业卫星数据服务行业发展战略与投资规划分析报告
- 江苏省南京市鼓楼区2024-2025学年七年级上学期期中数学试卷(含答案解析)
- 银行办公大楼物业服务投标方案投标文件(技术方案)
- 网络信息安全管理作业指导书
- (一模)宁波市2024学年第一学期高考模拟考试 化学试卷(含答案)
- GB/T 44481-2024建筑消防设施检测技术规范
- 人教版七年级生物上册第二单元第二章第二节脊椎动物二两栖动物和爬行动物课件
- 中国医学科学院肿瘤医院医用直线加速器维保项目招标文件
- 2024年度陕西省安全员之A证(企业负责人)能力提升试卷A卷附答案
- 泰康保险在线测评真题
- 初中道法教学经验交流会发言稿范文
评论
0/150
提交评论