高一数学教案:4.2.1直线与圆的位置关系(1课时)_第1页
高一数学教案:4.2.1直线与圆的位置关系(1课时)_第2页
高一数学教案:4.2.1直线与圆的位置关系(1课时)_第3页
高一数学教案:4.2.1直线与圆的位置关系(1课时)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一课时4.2.1 直线与圆的位置关系(1 课时)教学要求 :理解和掌握直线与圆的位置关系,利用直线与圆的位置关系解决一些实际问题。教学重点 :直线与圆的位置关系教学难点 :直线与圆的位置关系的几何判定.教学过程 :一、复习准备:1. 在初中我们知道直线现圆有三种位置关系: ( 1)相交,有一两个公共点; ( 2)相切,只有一个公共点; ( 3)相离,没有公共点。2. 在初中我们知道怎样判断直线与圆的位置关系?现在如何用直线和圆的方程判断它们之间的位置关系?二、讲授新课:设直线 l : axby c 0 ,圆 c : xay br 2圆心到直线的距离daabb c22a2b21.利用直线与圆的

2、位置直观特征导出几何判定:比较圆心到直线的距离d 与圆的半径 rdr直线与圆相交 d r直线与圆相切 dr直线与圆相离2.看直线与圆组成的方程组有无实数解: 有解 ,直线与圆有公共点.有一组则相切 :有两组 ,则相交 :b 无解 ,则相离3.例题讲解 :例1直线 y x 与圆 x22r 2 相切 ,求 r 的值y 1例2如图 1,已知直线 l :3 x y 60 和圆心为 c 的圆 x2y 22y 40.判断直线 l 与圆的位置关系 ; 如果相交 ,求出他们交点的坐标 .例3如图 2,已知直线 l 过点 m5,5且和圆 c : x2y225 相交 ,截得弦长为4 5 ,求 l 的方程练习 .已

3、知超直线l :3xy2 30 ,圆 c : x2y24 求直线 l 被圆 c截得的弦长4.小结:判断直线与圆的位置关系有两种方法(1) 判断直线与圆的方程组是否有解a 有解 ,直线与圆有公共点.有一组则相切;有两组 ,则相交b 无解 ,则直线与圆相离(2) 圆心到直线的距离与半径的关系: daabb ca2b2如果 dr 直线与圆相交 ;如果 dr 直线与圆相切 ;如果 dr 直线与圆相离 .三、巩固练习:1.圆 x2y22 x4y30 上到直线 l : xy 10 的距离为2 的点的坐标2.求圆心在直线 2xy3上 ,且与两坐标轴相切的圆的方程 .3.若直线4x3 ya0 与圆 x 2y21

4、00(1)相交 (2)相切 (3)相离分别求实数a 的取值范围四. 作业 :p1404 题第二课时4.2.2 圆与圆的位置关系教学要求 :能根据给定圆的方程,判断圆与圆的位置关系;教学重点 :能根据给定圆的方程,判断圆与圆的位置关系教学难点 :用坐标法判断两圆的位置关系教学过程 :一、复习准备第 1页共 4页1. 两圆的位置关系有哪几种?2. 设圆两圆的圆心距设为 d.当 d r r 时,两圆当 d r r 时,两圆当 | rr | drr时,两圆当 d| rr | 时,两圆当 d r r | 时,两圆如何根据圆的方程,判断它们之间的位置关系?(探讨 )二、讲授新课:1.两圆的位置关系利用半径

5、与圆心距之间的关系来判断c2aobc1图 1例1.已知圆 c1 : x2y22x8y80 ,圆 c2 : x2y 24x4 y20 ,试判断圆c1 与圆 c2 的关系?(配方圆心与半径探究圆心距与两半径的关系)2 两圆的位置关系利用圆的方程来判断方法:通常是通过解方程或不等式和方法加以解决例 2圆 c1 的 方 程 是 : x2y2x2y22x 2my m23 0 , m 为何值时思路:联立方程组讨论方程的解的情况2mx4 ym250圆c2的方程是:, 两圆 (1) 相切 .(2) 相交 (3) 相离 (4) 内含(消元法、 判别式法) 交点个数位置关系)练习:已知两圆x2y26x0 与 x2

6、y24 ym ,问 m取何值时,两圆相切。3.小结:判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定.(2)依据连心线的长与两半径长的和r1r2 或两半径的差的绝对值的大小关系.三、巩固练习:1.求经过点 m(2, -2),且与圆 x2y26 x0 与 x2y24 交点有圆的方程2.已知圆 c 与圆 x2y 22 x0 相外切 , 并且与直线 x3y0相切于点 q(3,- 3) , 求圆 c的方程 .求两圆 x 2y 21 和 x 32y24的外公切线方程3.4.求过两圆 c1 : x2y24x2 y0和圆 c2 : x2y22 y40 的交点 , 且圆心在直线l :

7、2x 4 y1 0 上的圆的方程 .四、作业 : p141练习题; p1449 题第三课时 . .直线与圆的方程的应用教学要求 :利用直线与圆的位置关系解决一些实际问题教学重点 :直线的知识以及圆的知识教学难点 :用坐标法解决平面几何.教学过程 :一、复习准备:(1) 直线方程有几种形式 ? 分别为什么 ?(2) 圆的方程有几种形式 ?分别是哪些 ?(3) 求圆的方程时 ,什么条件下 ,用标准方程 ?什么条件下用一般方程 ?(4)直线与圆的方程在生产.生活实践中有广泛的应用.想想身边有哪些呢?二、讲授新课:第 2页共 4页出示例1.图 1 所示是某圆拱形桥.这个圆拱跨度ab20m ,拱高op

8、4m ,建造时每间隔 4m 需要用一根支柱支撑 ,求支柱 a2 b2 的高度 (精确 0.01m)出示例 2.已知内接于圆的四边形的对角线互相垂直,求证圆心到一边距离等于这条边所对这条边长的一半.(提示建立平面直角坐标系)小结 :用坐标法解题的步骤 :1建立平面直角坐标系,将平南几何问题转化为代数问题 ;2利用公式对点的坐标及对应方程进行运算,解决代数问题 :3根据我们计算的结果,作出相应的几何判断 .三、巩固练习:1.赵州桥的跨度是37.4m.圆拱高约为7.2m.求这座圆拱桥的拱圆的方程2.用坐标法证明 :三角形的三条高线交于一点3.求出以曲线 x2y 225 与 yx213 的交点为顶点的

9、多边形的面积 .4.机械加工后的产品是否合格,要经过测量检验某车间的质量检测员利用三个同样的量球以及两块不同的长方体形状的块规检测一个圆弧形零件的半径.已知量球的直径为2 厘米 ,并测出三个不同高度和三个相应的水平距离,求圆弧零件的半径 .四、作业 : p144 练习 4 题;第四课时直线、圆的方程练习课教学要求 :教学重点 :教学难点 : .教学过程 :一、复习准备:(1)直线方程有几种形式? 分别为什么 ?(2) 圆的方程有几种形式 ?分别是哪些 ?(3)如何用直线和圆的方程判断它们之间的位置关系?(4)如何根据圆的方程,判断它们之间的位置关系?二、讲授新课1 推导标准方程例 1.推导以点

10、 a(a,b)为圆心 ,r 为半径的圆的方程练习 :一个圆经过点a(5,0)与 b(-2,1)圆心在直线 x3y10 0 上 ,求此圆的方程求圆 x 2220 的最远、最近的距离例2.y 34上的点到 x y22.轨迹问题第 3页共 4页充分利用几何图形的性质,熟练掌握两点间的距离公式、点到直线的距离公式。例 3.求过点a(4,0)作直线 l 交圆 o : x2y24 于 b,c两点 ,求线段 bc 的中点 p 的轨迹方程练习 由圆外一点引圆的割线交圆于a,b 两点 ,求弦 ab 的中点的轨迹 .3.弦问题主要是求弦心距(圆心到直线的距离),弦长,圆心角等问题。一般是构成直角三角形来计算例 4.直线 l 经过点5,5,且和圆 x2y225 相交,截得的弦长为 4 5 ,求 l 的方程。4.对称问题圆关于点对称,圆关于圆对称例 5.求圆 x2y1214 关于点 2,2对称的圆的方程222 y 2 0 对称的圆的方程练习求圆x1y14 关于直线 l : x三、巩固练习221.从圆外一点p(1,1)向圆 x +y =1 引

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论