高二文科圆锥曲线测试_第1页
高二文科圆锥曲线测试_第2页
高二文科圆锥曲线测试_第3页
高二文科圆锥曲线测试_第4页
高二文科圆锥曲线测试_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥曲线测试一、选择题(本题共12小题,每小题5分,共60分)1抛物线y4x2的准线方程是()Ax1Bx1 Cy Dy2“1m0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为() A.1 B.1 C.1 D.18已知过抛物线y26x焦点的弦长为12,则此弦所在直线的倾斜角是()A.或 B.或 C.或 D.9 过椭圆1内的一点P(2,1)的弦,恰好被P点平分,则这条弦所在的直线方程是()A5x3y130 B5x3y130 C5x3y130 D5x3y13010已知点P是椭圆上任意一点,则点P到直线的距离最大值为( )ABCD11已知直线yk(

2、x2)(k0)与抛物线C:y28x相交于A,B两点,F为C的焦点,若|FA|2|FB|,则k()A. B. C. D.11已知椭圆x2a2+y2b2=1(ab0)上一点A关于原点的对称点为点B,F为其右焦点.若AFBF,设ABF=,且6,4,则该椭圆离心率e的取值范围为()A.22,3-1B.22,1 C.22,32D.33,63二、填空题(本题共4小题,每小题5分,共20分)13以双曲线1的焦点为顶点,顶点为焦点的椭圆方程为_14设F1,F2为曲线C1:1的焦点,P是曲线C2:y21与C1的一个交点,则PF1F2的面积为_15已知双曲线=1的两条渐近线的夹角为,则双曲线的离心率为 16 已知

3、A(4, 0), B(2, 2)为椭圆内的点,M是椭圆上的动点,则|MA|+|MB|最小值是 三、解答题(本题共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)已知抛物线的顶点在原点,它的准线过双曲线1(a0,b0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P,求抛物线的方程和双曲线的方程18(本小题满分12分)已知抛物线方程为y22x,在y轴上截距为2的直线l与抛物线交于M,N两点,O为坐标原点若OMON,求直线l的方程19(本小题满分12分)设A,B分别为双曲线1(a0,b0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的

4、距离为.(1)求双曲线的方程;(2)已知直线yx2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标 20(本小题满分12分)已知椭圆1及直线l:yxm.(1)当直线l与该椭圆有公共点时,求实数m的取值范围;(2)求直线l被此椭圆截得的弦长的最大值21(本小题满分12分)已知点A(0,2),椭圆E:1(ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程22(本小题满分12分)已知椭圆1(ab0)的离心率e,过点A(0,b)和B(a,0)的直线与原点

5、的距离为.(1)求椭圆的方程(2)已知定点E(1,0),若直线ykx2(k0)与椭圆交于C,D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由17(本小题满分10分)已知抛物线的顶点在原点,它的准线过双曲线1(a0,b0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P,求抛物线的方程和双曲线的方程解:依题意,设抛物线的方程为y22px(p0),点P在抛物线上,62p.p2,所求抛物线的方程为y24x.双曲线的左焦点在抛物线的准线x1上,c1,即a2b21.又点P在双曲线上,1,解方程组得或(舍去)所求双曲线的方程为4x2y21.18(本小题满分12分)

6、已知抛物线方程为y22x,在y轴上截距为2的直线l与抛物线交于M,N两点,O为坐标原点若OMON,求直线l的方程解:设直线l的方程为ykx2,由消去x得ky22y40.直线l与抛物线相交,解得k且k0.设M(x1,y1),N(x2,y2),则y1y2,从而x1x2.OMON,x1x2y1y20,即0,解得k1符合题意,直线l的方程为yx2.19(本小题满分12分)设A,B分别为双曲线1(a0,b0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线yx2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标解:(1)由题意知

7、a2,又一条渐近线为yx,即bxay0.由焦点到渐近线的距离为,得.b23,双曲线的方程为1.(2)设M(x1,y1),N(x2,y2),D(x0,y0),则x1x2tx0,y1y2ty0.将直线方程yx2代入双曲线方程1得x216x840,则x1x216,y1y2(x1x2)412.t4,点D的坐标为(4,3)20(本小题满分12分)已知椭圆1及直线l:yxm.(1)当直线l与该椭圆有公共点时,求实数m的取值范围;(2)求直线l被此椭圆截得的弦长的最大值解:(1)由消去y,并整理得9x26mx2m2180.上面方程的判别式36m236(2m218)36(m218)直线l与椭圆有公共点,0,据

8、此可解得3 m3 .故所求实数m的取值范围为3 ,3 (2)设直线l与椭圆的交点为A(x1,y1),B(x2,y2),由得:x1x2,x1x2,故|AB| ,当m0时,直线l被椭圆截得的弦长的最大值为.21(本小题满分12分)已知点A(0,2),椭圆E:1(ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程解:(1)设F(c,0),由条件知,得c.又,所以a2,b2a2c21.故E的方程为y21.(2)当lx轴时不合题意,故设l:ykx2,P(x1,y1),Q(x2,y2)将yk

9、x2代入y21中,得(14k2)x216kx120.当16(4k23)0,即k2时,由根与系数的关系得:x1x2,x1x2.从而|PQ|x1x2|.又点O到直线PQ的距离d.所以OPQ的面积SOPQd|PQ|.设t,则t0,SOPQ.因为t4,当且仅当t2,即k时等号成立,且满足0.所以,当OPQ的面积最大时,l的方程为yx2或yx2.22(本小题满分12分)已知椭圆1(ab0)的离心率e,过点A(0,b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程(2)已知定点E(1,0),若直线ykx2(k0)与椭圆交于C,D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由解:(1)直线AB方程为:bxayab0.依题意解得椭圆方程为y21.(2)假若存在这样的k值,由得(13k2)x212kx90.(12k)236(13k2)0.设C(x1,y1),D(x2,y2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论