版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、根的分布教案一元二次方程根的分布汤丽娅一、教材及学情分析二次函数是重要的初等函数类型, 一元二次方程是初中阶段学习的一个重要内容,含参的一元二次方程根的分布实际上是综合应用一元二次方程根与系数的关系、二次函数的基本性质、 分类讨论思想、 数形结合思想等思想方法来解决的一类专题性内容,是基于人教版九年级二次函数与人教版 A 版高中教材必修 1 第二章函数的基本性质的一节专题教学或研究性学习。 本节教学结合解一元二次方程及根与系数的关系、 二次函数的性质、 函数的基本性质, 是初等函数思想方法,特别是数形结合思想应用的典型。 虽然教材并没有单独成节, 但教材中却处处渗透着这一内容。 一元二次方程根
2、的分布问题是二次函数性质的集中体现, 是对函数的基本思想方法的巩固和提升, 是难得的好素材。 本节教学内容是在学生初中已初步探讨学习了正比例函数、 反比例函数、 一次函数等简单函数, 高中探讨了集合工具和函数的基本性质 (单调性、 奇偶性等)的基础上重新回到一元二次方程根的问题上, 学生既能提升对函数、 方程等知识的认识, 又能提升对分类讨论、数形结合、转化等数学思想的认识,提高解决问题的能力,巩固、完善学生的函数知识、方法体系。二、教学目标1、知识与能力目标: 加深对一元二次方程、 二次函数的认识; 利用函数知识、方法重新审视一元二次方程更本质的规律;会熟练利用二次函数的图象性质解决一元二次
3、方程根的分布问题。2、过程与方法目标:经历观察、归纳、概括等数学活动过程,获得一元二次方程根的分布与系数的重新夺得关系的条件限制(不等式组);通过运算获得具体、简洁的数量关系; 通过创造性思维提出新的问题并尝试通过合作、交流解决所提出的新问题;并会运用规律解决综合问题,并对此进行反思、推广。3、情感态度与价值观目标:体会二次函数乃至函数知识、思想的丰富多彩;能积极参与数学学习活动, 体验数学学习充满着的探索性和创造性,锻炼克服困难的意志,建立自信;培养对知识的科学态度和辩证唯物主义观点。根的分布教案三、重难点分析重点:一元二次方程根的分布的函数解法难点:利用换元法将不熟悉的方程转化为一元二次方
4、程四、教法与教具设计教法:采用高中数学“问题解决”教学方法:创设问题情境发现问题探索问题解决问题发现问题探索(新)问题;采用多媒体演示,提高效率;师生互动,活跃课堂气氛。教具: PPT五、教学过程设计教学环节过程设计一 问题一创5x2、 4x 、 3 是什么式子?将这三个式子相加又会设得到什么 ?在相加后的式子再添上 “0 ”,就会变成我们情熟悉的一元二次方程,请问一元二次方程的一般表达式境是,且要注意什么?揭答:单项式,多项式, ax2bx c 0(a0)示问题二课若一元二次方程有两个实根,则两个根如何用系数题表示(求根公式)?描述两根之间关系的韦达定理是?答: x1, 2bb24ac ,
5、x1 x2b , x1 x2c2aaa问题三、解一元二次方程:1、 x26x8 0 x12, x242、 x25x1 0 x1,25292问题四: 求证方程 3456 x23458 x10师生活动及设计意图师在黑板上依次写下三个式子,回顾简单的知识,使学生获得成功感。回顾韦达定理,为下面例题讲解奠定基础巩固韦达定理,在第二个方程不能运用十字相乘法,使学生自然想到求根公式,为问题四作铺垫。学生在探究问题四遇到困难,激发学习新知的兴趣,继而引出这节课的内容。在区间 ( 2,2) 上有实数根?根的分布教案(预设:有些同学在草稿纸上开始试图用十字相乘法)思考:1、 3456x23458x1 0 与 y
6、 3456x23458x 1有什么联系?2、若 a 是方程345623458 1 0 的根,则函数值xxf (a)?3、求方程的根是否可以转化为函数图象与x 轴交点得问题?总结: 求一元二次方程ax2bxc0(a0) 根的分布问题可以转化为函数f (x)ax 2bxc图象与x 轴交点位置的问题,并指出下面讨论一般情况时只考虑a0时的情况。二例 1 若关于 x 的方程x25xm0 有两个正根,在例题中总结,从特例则实数 m的取值范围是 _.殊到一般。题解:(韦达定理法)例 2 中要考虑二次项讲由题意得:系数的正负,使学生解b24ac025 4m0形 成 分 类 讨 论的 思25探x1x20500
7、想,提高数形结合的m究x1 x20m04能力。一(函数法)在总结完前两种情况元令 f (x) x25xmy后,让学生自己归纳二0m根出现一正一负的情525次xb00m2.5况,回归让学生自主2a240方f (0)0x探索问题。程方法总结:例 3 与上述意图一致,根通过让学生到黑板书的写,了解到学生的学根的分布教案分b24ac0习情况,及时做好教布有两个正根x1x20(韦达定理法)学方法的转变。x1x20规律0b0(函数法)x2a0f (0)例 2若关于 x 的二次方程 (k2) x2(3k 6)x 6k0有两个负根, 则实数 k 的取值范围是 _.解:(韦达定理)由题意得0(3k6)24(k
8、2) 6k 0x1x203k6k0x1x2026k0k225k0(函数法)yk200bx02af (0)0k200或b0x2a0f ( 0)2k05方法总结:(a0)有两个负根0xy0xb24ac0x1x20x1 x20根的分布教案b0(韦达定理法)0 (函数法)x2af (0)0有一个正根一个负根x10(韦达)x20f (0)0 (函数法)由两个例题总结出用函数法解决一元二次方程根的分布,在书写等价条件时应该考虑以下四点: 开口方向值 对称轴 相应函数值例 3设 x1 , x2 是方程 ax 2bxc0( a0) 的两个实根, k, k1, k2 为常数,试在下表中画出对应的函数图象,填上对
9、应的等价条件:当 x1x2k图象:ykxx20x10等价条件:bk2a0f ( k)当 k x1x2 时,y图象:k0b等价条件:k 0x2a0f ( k)当 x1 k1k2 x2时,y根的分布教案图象:x1k1kx202等价条件:f (k1 )0f (k2 )0当 k1 x1x2 k2 时图象:yk1x1x2k2等价条件:00xk1bk22af ( k1)00xf (k2 )0三练习:已知关于 x 的一元二次方程 2ax22x 3a及时巩固新知,为下应20 的一个根大于1,另一个根在 0 与 1 之间, 面思考题作铺垫用求 a 的取值范围新一个根在区间 (0,1)内,另一个根在区间 (1,2)内;知有一个根大于1,另一个根小于1;体两个根都大于2.验成功根的分布教案四思考题:复 合 的 一 元 二次 方思若方程4x(k1)2xk20有一个正根和负根,程,联系了新旧知识,考求 k 的取值范围。完善了知识系统。中解:(换元法)完令 t 2x ,则 t(0,)善知原方程化为 t2(k1)tk20 有一个 t1 2x1识和一个0t22x1的根体令 f (t)t 2(k 1)tk2系由此得f ( 0)02k1f (1)0五 1利用函数的思想来解决一元二次方程根的分布课问题;堂2影响一元二次方程根分布的几个限制条件;小 3. 韦达定理与一元二次方程根与系数之间的关结系及其解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 支票作为借款抵押物的合同3篇
- 房屋买卖合同范本版3篇
- 方式购物合同格式3篇
- 改扩建工程施工合同的培训资料3篇
- 招标方案范本3篇
- 安全骑行承诺电动车安全责任3篇
- 文化创意产业基地合作协议3篇
- 新版无担保借款合同模板3篇
- 景观设计测量员劳动合同
- 港口工程委托施工合同
- 五年级数学(小数乘除法)计算题专项练习及答案
- 审计工作述职报告
- 《机电概念设计基础》课件-运行时行为
- 2024-2030年中国奶粉行业营销策略及未来5发展趋势报告
- 2024年度危化品安全管理员聘用合同2篇
- 2025届杭州第二中学高三第五次模拟考试数学试卷含解析
- 广东省广州海珠区2023-2024学年八年级上学期期末物理试卷(含答案)
- 开题报告:新业态下大学生高质量充分就业实现路径研究-基于双边匹配的视角
- 江苏南京市栖霞区八校联考2024-2025学年九年级上册历史调研试卷(含答案)
- 医院满意度调查系统方案
- 2024年度企业信息化建设与技术实施合同3篇
评论
0/150
提交评论