版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2讲 相对运动和匀变速运动变速运动的研究是高中物理课本的开始,也是我们训练童鞋们高中物理竞赛能力,必不可少的一步。这个地方的难点主要在于,对于加速度概念的理解,和对匀变速直线运动诸多公式的熟练运用。告诉大家个诀窍:就是自己推公式。这是记住公式,并且能够灵活运用的不二法门。另一方面,童鞋们也会着重的接触物理竞赛运动学的精髓之一:相对运动一:运动的合成分解:由于位移、速度、加速度与力一样都是矢量。是分别描述物体运动的位置变化运动的快慢及物体运动速度变化的快慢的。由于一个运动可以看成是由分运动组成的,那么已知分运动的情况,就可知道合运动的情况。例如轮船渡河,如果知道船在静水中的速度的大小和方向,以
2、及河水流动的速度的大小和方向,应用平行四边法则,就可求出轮船合运动的速度v(大小方向)。这种已知分运动求合运动叫做运动的合成。相反,已知合运动的情况,应用平行为四边法则,也可以求出分运动和情况。例如飞机以一定的速度在一定时间内斜向上飞行一段位移,方向与水平夹角为30,我们很容易求出飞机在水平方向和竖直方向的位移:这种已知合运动求分运动叫运动的分解。合运动分运动是等时的,独立的这一点必须牢记。以上两例说明研究比较复杂的运动时,常常把这个运动看作是两个或几个比较简单的运动组成的,这就使问题变得容易研究。在上例轮船在静水中是匀速行驶的,河水是匀速流动的,则轮船的两个分运动的速度矢量都是恒定的。轮船的
3、合运动的速度矢量也是恒定的。所以合运动是匀速直线的。一般说来,两个直线运动的合成运动,并不一定都是直线的。在上述轮船渡河的例子中如果轮船在划行方向是加速的行驶,在河水流动方向是匀速行驶,那么轮船的合运动就不是直线运动而是曲线运动了。由此可知研究运动的合成和分解也是为了更好地研究曲线运动作准备。掌握运动的独立性原理,合运动与分运动等时性原理也是解决曲线运动的关键。运动合成、分解的法则:运动的合成和分解是指位移的合成与分解及速度、加速度的合成与分解。因为位移、速度和加速度都是矢量,所以运动的合成(矢量相加)和分解(矢量相减)都遵循平行四边形法则。关于这一点通过实验是完全可以验证的,通过对实际运动观
4、察也能得到证实。如图所示,若OA矢量代表人在船上行走的位移(速度或加速度)OB矢量代表船在水中行进的位移(速度或加速度),则矢量OC的大小和方向就代表人对水(合运动)的位移(速度或加速度)。几点说明: 掌握运动的合成和分解的目的在于为我们提供了一个研究复杂运动的简单方法。 物体只有同时参加了几个分运动时,合成才有意义,如果不是同时发生的分运动,则合成也就失去了意义。 当把一个客观存在的运动进行分解时,其目的是在于研究这个运动在某个方向的表现。 处理合成、分解的方法主要有作图法和计算法。计算法中有余弦定理计算、正弦定理计算、勾股定理计算及运用三角函数等。二、运动的相对性:因为描述运动要选取参照系
5、,所以参照系的选取将对我们解决问题产生巨大的影响首先我们要分析一下速度的相对性三、运动的合成法则绝对速度:我们(在高考范围内)一般把质点对地面,或者相对于地面上静止的物体的运动称为“绝对运动”相应的速度为“绝对速度”相对速度:质点相对于运动参考系的运动称为相对运动相应的速度为相对速度牵连速度:运动的参考系相对于地面的运动称为牵连运动相应的速度为牵连速度则有:或者注意:这里提到的相对运动的参考系都是匀速运动的参考系再看一个位移合成的例子如图所示,在船上有人把一箱货物从点搬到点(以船为参考系),与此同时船上的点行进到点(以岸为参考系)那么以岸为参考系箱子的位移是什么?这可用平行四边形法则来求出:以
6、矢量、为邻边作平行四边形,则对角线矢量就是箱子相对于岸的位移暑假多雨,关于雨的描述问题【例题1】 一木板坚直地立在车上,车在雨中匀速进行一段给定的路程。木板板面与车前进方向垂直,其厚度可忽略。设空间单位体积中的雨点数目处处相等,雨点匀速坚直下落。下列诸因素中与落在木板面上雨点的数量有关的因素是:A.雨点下落的速度 B.单位体积中的雨点数 C.车行进的速度 D.木板的面积 【答案】BD某汽车前方的挡风玻璃与水平方向成角度37,当汽车以30m/s在水平地面上开行时,汽车司机看到雨滴垂直打在挡风玻璃上,实际虽然下雨但是没有风,计算雨滴下落的速度。【解析】相对速度与玻璃垂直,所以雨滴速度【例题2】 【
7、拯救淡定哥】据报导:6月8日下午17时,中国内地大部分省区高考结束。正在此时,江西南昌、上饶、鹰潭、吉安等多地突遭强降雨袭击。在江西南昌二中考点,刚考完的学生面对突如其来的大雨选择在雨中疾步飞奔,而一名戴着眼镜的男生却在全身被大雨淋湿后,淡定走出考场校。“淡定哥”一淋而出名,我们不妨从物理的角度讨论一下淋雨之问题。 假设雨下落的速度与竖直方向成角度为,雨下落的速度大小为v.“淡定哥”拿起自己的准考证顶在头顶,这样可以忽略从上而下的淋雨量。要淡定哥在一定时间内淋雨最少,他得向着什么方向跑? 【答案】沿着与雨滴的水平速度分量以速度vsin跑。【谣言终结者】有物理大神传言:一个人在雨中从A跑到B,无
8、论人以多大的速度跑,人的侧面淋雨的总量总是恒定的,难道淡定哥是传说中的物理大神?不妨讨论一下。【例题3】 设河水流速为,小船在静水中航行速度为,若小船从一岸行驶到对岸,问当船的航行方向怎样时,才能小船所花的时间最短;小船所经过的路程最短?【解析】 分析以地球为参照物,小船渡河的速度是由水速和船速合成的:,解此题要注意的是渡河过程中,一是水和船都在同时运动(等时性),二是从此岸到彼岸只有船速才起作用(互不相干性): 小船渡河到对岸所花时间只与船速有关,要使时间最短,必须让航行方向垂直水流直指对岸 当时,显然,最短的路程即河宽,如图所示,航行方向为偏向上游一个角度,其角度大小为当时,垂直河岸的航行
9、方向驶向对岸是不可能的,但总可以找到一个这样的方向,使得航行的路程最短:如图,设小船实际航行速度为,与河岸夹角为,实际路程为,则有,要求的极小值,即要求的最大值在速度合成的矢量三角形中,设,运用正弦定理,由上可见,只有当,即合速度与船速垂直时,小船才有最短路程,此时船的航行方向是:偏向上游,与水流的夹角为,其所经过的路程为【例题4】 当船速为时,船桅杆上服役旗与航向成角不改变航向,船速增加一倍时,旗与航向成角试根据这些数据求风速(可视为恒定的),并求当船速为多少时旗与航向所成的角度为【解析】 船桅杆上旗的方向表示矢量的方向,式中为船速度矢量,为风速矢量,题给各矢量关系如图所示,由图中几何关系得
10、:,则:在中,因,故为等边三角形,即风速,与航向成角在图中作,有向线段即旗与航向成角时船的速度矢量,由图示几何关系知:【例题5】 如图所示,几辆相同的汽车以等速度沿宽为的直公路行驶,每车宽为,头尾间间距为,则人能以最小速度沿一直线穿过马路所用的时间为多少?【解析】 先设想车不动,则人以车速向左运动,临界情况对应人按图所示虚线方向走过,即为人安全穿过马路的最小速度,则,故所需时间为引入:匀变速直线运动的特点我们把加速度恒定的运动称之为匀变速运动,根据匀变速直线运动的定义可知,它的加速度是一个恒量,即加速度的大小和方向都不随时间变化,如果用图象来描述,匀变速直线运动的图象就是一条平行于轴的直线,匀
11、变速直线运动的图象是一条倾斜的直线,图象的斜率是加速度一匀变速直线运动的规律速度和时间的关系(1)速度公式的导出:由加速度的定义式得:(2)图象图象直观地反映了速度随时间的变化规律,如图所示根据图象,可以确定的是 初速度的大小,即图象中纵轴截距判断是加速运动,还是减速运动,在图中,甲是加速的,乙是减速的算出加速度,即为图线的斜率确定某时刻的速度或达到某速度所需要的时间平均速度公式(1)平均速度的一般表达式:此式表示作变速运动的物体通过的位移与通过这段位移所用时间的比值为物体在这一段位移上的平均速度,此式适于任何形式的运动(2)匀变速运动的平均速度公式:即平均速度为初、末速度的算术平均值注意:上
12、式成立的条件是物体作匀变速直线运动位移和时间的关系(1)匀速直线运动的位移,位移的大小可由图象上的“面积”的大小表示,如图所示(2)匀变速直线运动的位移 根据平均速度的意义,作任何变速运动物体的位移都可表示为,此式具有普遍性,即任何情况下都成立而在匀变速直线运动中,平均速度,所以匀变速直线运动的位移 位移公式的推导【公式代入法】由于位移,而,又因为,在此三式中消去和,得到位移公式【图象法】如图所示为物体作匀变速直线运动的图象,在时间内的位移由 “面积”的数值可以表示出来位移大小等于梯形面积:,也即速度和位移的关系式由于,又有即,代入前式可得:,即:,这便是速度和位移的关系式一般解题方法(1)确
13、定某一运动过程为研究对象,判断物体运动的性质(匀加速或匀减速运动)(2)对匀减速运动,设初速度方向为正方向,则加速度为负值,写出各已知量(3)代入公式进行计算,并对计算结果作必要讨论【例题6】 如图所示,以 匀速行驶的汽车即将通过路口,绿灯 还有2 s将熄灭,此时汽车距离停车线18m该车加速时最大时速度大小为,减速时最大加速度大小为此路段允许行驶的最大速度为,下列说法中正确的有A如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D如果距停车线处减速,汽车能停在停车线处【答案】
14、AC【解析】 熟练应用匀变速直线运动的公式,是处理问题的关键,对汽车运动的问题一定要注意所求解的问题是否与实际情况相符如果立即做匀加速直线运动,t1=2s内的位移=20m18m,此时汽车的速度为12m/s.我们现在的手段就是微积分的爸爸:微元法+图像法怎么?不相信?思考:某个函数的变化率是个最简单的过原点的二次函数:,那么这个函数是神马函数?求这个函数从的变化量(答案)(教师版)把等分成无限多的份:则总之,大家要时刻保持一个清醒的头脑,我们学习运动学,绝不仅仅是为了学习运动学本身,这些思考和分析的方法,无论从数学上还是物理上,都是会对将来的知识进行推广的。还有,不要忘记,始终注意考虑运动的相对
15、性哦!【例题8】 A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B正以v2=10m/s速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动。要使两车不相撞,a应满足什么条件?解1:(公式法)两车恰好不相撞的条件是两车速度相同时相遇。(包含了时间关系)由A、B 速度关系: 由A、B位移关系: 解2:(图像法)在同一个v-t图中画出A车和B车的速度时间图像图线,根据图像面积的物理意义,两车位移之差等于图中梯形的面积与矩形面积的差,当t=t0时梯形与矩形的面积之差最大,为图中阴影部分三角形的面积.根据题意,阴影部分三角形的面积不能超过100 .物体的v-t图像
16、的斜率表示加速度,面积表示位移。 解3:(相对运动法)以B车为参照物, A车的初速度为v0=10m/s,以加速度大小a减速,行驶x=100m后“停下”,末速度为vt=0。(由于不涉及时间,所以选用速度位移公式。 )备注:以B为参照物,公式中的各个量都应是相对于B的物理量.注意物理量的正负号。解4:(二次函数极值法)若两车不相撞,其位移关系应为代入数据得:其图像(抛物线)的顶点纵坐标必为正值,故有 把物理问题转化为根据二次函数的极值求解的数学问题。 【例题9】 已知甲乙两辆车,从静止开始,沿着同一个方向做匀加速直线运动。在第一段时间里面他们的加速度满足关系:;第二段相等的时间里面他们交换了加速度
17、,也就是说:;求从开始到第二段时间结束,两个车的位移比【解析】如图:【例题10】 已知一质点做变加速直线运动,初速度为,其加速度速度随位移线性减小的关系即加速过程中加速度与位移之间的关系满足条件,式中为任意位置处的加速度,为位移,、为常量,求当位移为时质点的瞬时速度. 【解析】 因,故可利用图像的面积求出().建立图如图所示,图中阴影部分面积的两倍就表示(),故,得 .【例题11】 如图所示,以为加速度从静止开始向左匀加速运动,沿斜面向下以加速度从静止开始,运动到水平后匀速,问能追上的条件是什么?【解析】 如果很大,则追不上,本题求最小值,做图图中为斜面长度,为比多走的距离恰好追上时,即所以得
18、,因此当时可以追上【例题12】 美帝国主义的一个航空母舰以速度匀速直线运动。上面的一个飞机,从“静止”开始,相对于航空母舰以加速度均匀的加速运动(沿着航空母舰运行的方向)。已知如果飞机相对地面的速度达到,则可以起飞。问从“静止”到开始起飞,需要经过多少时间? 航空母舰上的跑道至少要有多长?思考:怎样设计航空母舰才能尽量增加跑道的长度?【解析】观察美军的尼米兹级航母可以发现,航母上有两条跑道,一条直的一条斜的,斜的那条就是斜角甲板,设置这两条跑道的目的是为了可以让航母同时进行起飞和降落作业,如果只有一条直通甲板的话,飞机起飞时,只得让停放的飞机挤在飞行甲板后半部,而将前半部用作起飞的跑道。然而,
19、这样做不仅影响了飞机的滑跑距离,还必须等飞机起飞腾出跑道,空中的飞机才可以降落,并且稍有不慎,后降落的飞机很容易碰撞到先降落的飞机上。斜角甲板终于由英国人在1952年2月发明成功。斜角甲板又叫斜、直两段式甲板,位于飞机甲板的左侧,与舰艇艏艉中心线呈613度夹角。有了这角度,飞机降落就可与停驻的飞机和起飞作业区分流,同时还可实现弹射和回收作业同时进行。回收区的角度相当重要。角度愈大,对驾驶员着舰的难度就愈大。此外,斜角甲板的设计还可使降落区免遭左舷前弹从喷气火焰挡板引出的热气流,从而降低空气紊流的干扰。通常,斜角甲板上只装有供飞机降落用的阻拦索。然而,极少数航空母舰的斜角甲板上也装有一两座弹射器
20、,其目的在于在没有飞机降落时供飞机起飞之用【例题13】 高空中有四个小球,在同一位置同时以相同速率向上、向下、向左、向右被射出,不计空气阻力,图是经过1 s后四个小球在空中位置的构图,其中的正确图形是( )【解析】在以加速度竖直加速向下运动的参考系中看,四个球分别向上、下、左、右四个方向作匀速直线运动,故答案A正确【神奇!】如图:由于相机曝光时间较长,所以记录了烟火中每一个爆炸碎片的轨迹以及碎片形成的轨迹覆盖的区域。在碎片未落地前,碎片的包络面是一个球面,当碎片落地后,所有的“亮区”的包络面是一个抛物面。【例题14】 (CPHO选讲)摩托车速度沿平直公路行驶,突然,驾驶员发现正前方处,有一辆汽
21、车正以的速度开始减速,加速度大小为,为了避免发生碰撞,摩托车也同时减速,求其加速度至少得多少?【解析】 两车都做匀减速直线运动,不相碰撞的临界状态为:当汽车经时间停下时,摩托车正好经同样时间靠汽车停下,这时,两者的图线如图a所示,其相对位移为.当两车间距较小,即时,两车不发生碰撞的条件为相对速度为零,即有共同速度时,(图b),即.这时,摩托车的加速度应为.当两车间距较大,即时,汽车经时间先停下,摩托车经后停下,两车不发生碰撞的条件(图c),即这时,摩托车的加速度应为.1 当自行车向正东方向以5km/h的速度行驶时,人感觉风从正北方向吹来;当自行车的速度增加两倍时,人感觉风从正东北方向吹来,求风对地的速度和风向.【答案】 11.8km/h,东偏南63.4几个物理笑话1.德国著名物理学家威廉?康拉德?伦琴(1845
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋买卖合同中的房屋抵押及解押约定3篇
- 二零二五河南事业单位100人招聘项目合同执行标准3篇
- 二零二五版建筑工程项目现场勘察与监测服务合同3篇
- 二零二五版混凝土结构防雷接地施工合同2篇
- 二零二五年度草场承包管理与开发合同范本3篇
- 二零二五版国际贸易实务实验报告与国际贸易实务实训合同3篇
- 二零二五年度虚拟现实(VR)技术研发合同3篇
- 二零二五年度特种货物安全运输服务合同范本2篇
- 二零二五年度体育设施建设与运营管理复杂多条款合同3篇
- 二零二五年度电梯门套安装与安全性能检测合同3篇
- 建筑工程一切险条款版
- 人教版八年级下册第一单元英语Unit1 单元设计
- PEP小学六年级英语上册选词填空专题训练
- 古建筑修缮项目施工规程(试行)
- GA 844-2018防砸透明材料
- 化学元素周期表记忆与读音 元素周期表口诀顺口溜
- 非人力资源经理的人力资源管理培训(新版)课件
- MSDS物质安全技术资料-201胶水
- 钼氧化物还原过程中的物相转变规律及其动力学机理研究
- (完整word)2019注册消防工程师继续教育三科试习题及答案
- 《调试件现场管理制度》
评论
0/150
提交评论