版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二数学上学期期末考试试题 文(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则( )A. B. C. D. 【答案】C【解析】【分析】先根据一元二次不等式计算出集合中表示元素范围,然后计算出的范围,最后根据交集的含义计算的结果.【详解】因为,所以即,所以,又因为,所以.故选C.【点睛】本题考查集合的补集与交集混合运算,难度较易,注意一元二次不等式的解集的求解.2.抛物线的准线方程是( )A. B. C. D. 【答案】C【解析】【分析】将抛物线方程化成标准式,直接求解即可【详解】解:抛物线的标准方程为:,可得
2、,抛物线的准线方程是:故选【点睛】本题考查抛物线的简单性质的应用,考查计算能力,属于基础题3.下列命题的说法错误的是()A. 对于命题p:xR,x2+x+10,则p:x0R,x02+x0+10B. “x=1“是“x23x+2=0“的充分不必要条件C. “ac2bc2“是“ab“的必要不充分条件D. 命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”【答案】C【解析】【详解】对于命题p:xR,x2+x+10,则p: x0R,x02+x0+10,是真命题;“x=1”是“x23x+2=0“的充分不必要条件,是真命题;若c=0时,不成立,是充分不必要条件,是假命题;命题“若
3、x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,是真命题;故选C.4.已知函数在处取得极小值,则的值分别为( )A. -4,4B. 4,-4C. 4,4D. -4,-4【答案】A【解析】【分析】求出函数的导数,根据函数在处取得极小值,得到且,得到方程组,解得.【详解】解:因为函数在处取得极小值即解得故选:【点睛】本题考查利用导数研究函数的极值,属于基础题.5.已知等差数列的前项和为,且,数列满足,则数列的前9项和为 ( )A. 20B. 80C. 166D. 180【答案】D【解析】【详解】等差数列an的前n项和为Sn,且S2=4,S4=16,可得,解得d=2,a1=1
4、,an=2n1,bn=an+an+1=4n.数列bn前9和.本题选择D选项.6.已知斐波那契数列的前七项为:,大多数植物的花,其花瓣数按层从内向外都恰是斐波那契数现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层A. 5B. 6C. 7D. 8【答案】C【解析】【分析】一朵该种玫瑰花的花瓣数为33,计算斐波那契数列的前项和,观察前几项和为33即得【详解】由题设知,斐波那契数列的前6项和为20,前7项和为33,由此可推测该种玫瑰花最可能有7层,故选:C【点睛】本题考查数列的前项和,掌握数列和的概念是解题
5、基础7.若,则下列不等式:;|a|+b0;lna2lnb2中,正确的是()A. B. C. D. 【答案】C【解析】【详解】先由0得到a与b的大小关系,再根据不等式的性质,对各个不等式进行逐一判断.由0,可知ba0.中,a+b0,所以0.故有,即正确.中,ba-a0,故-b|a|,即|a|+b0,故错误.中,baab,又-0,a-b-,故正确.中,baa20,而y=lnx在定义域上为增函数.lnb2lna2,故错,综上分析,错误,正确.8.(2017新课标全国卷文科)设A,B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是A. B. C. D. 【答案】A【解析】当
6、时,焦点在轴上,要使C上存在点M满足,则,即,得;当时,焦点在轴上,要使C上存在点M满足,则,即,得,故的取值范围为,选A点睛:本题设置是一道以椭圆知识为背景的求参数范围的问题解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论9.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f (x)的图象可能是()A. B. C. D. 【答案】A【解析】【分析】根据原函数的单调性,判断导数的正负,由此确定正确选项.【详解】根据的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从
7、左到右,是:正、负、正、负.结合选项可知,只有选项符合,故本题选A.【点睛】本小题主要考查导数与单调性的关系,考查数形结合的思想方法,属于基础题.10.设等差数列的前项和分别为,若,则使的的个数为( )A. B. C. D. 【答案】C【解析】【分析】先由题意,根据等差数列前项和的性质,得到,再由,得到,从而即可求出结果.【详解】因为等差数列的前项和分别为,所以,又,所以,为使,只需,又,所以可能取的值为:,因此可能取的值为:.故选C【点睛】本题主要考查等差数列前项和的应用,熟记等差数列前项和的公式与性质即可,属于常考题型.11.在中,角所对的边分别为,若,则周长的取值范围是( )A. B.
8、C. D. 【答案】A【解析】【分析】利用三角函数恒等变换的应用化简已知可得,结合的范围可求,再由余弦定理求得 ,再由基本不等式,求得的范围,即可得到的范围,进而可求周长的范围【详解】,可得:,解得,由余弦定理可得 由, ,得,即周长 故选A【点睛】本题主要考查了三角函数恒等变换的应用,余弦定理及运用,同时考查基本不等式的运用,考查运算能力,属于中档题12.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线的四个交点依次连线恰好构成一个正方形,则双曲线的离心率为( )A. B. C. 2D. 【答案】D【解析】【分析】设以为直径的圆与双曲线在第一象限的交点为,代入双曲线和圆的方程,根据正方形关
9、系,求解离心率.【详解】设以为直径的圆与双曲线在第一象限的交点为,以为直径的圆与双曲线的四个交点依次连线恰好构成一个正方形,则代入可得:,两边同时除以得:,双曲线离心率所以故选:D【点睛】此题考查通过双曲线上的点的关系求解离心率,关键在于将题目所给条件转化成代数关系求解,构造齐次式解方程.二、填空题:本大题共4小题,每小题5分.共20分.13.已知椭圆与双曲线有共同的焦点,则_【答案】 4【解析】【分析】先求出椭圆的焦点坐标,再根据双曲线的焦距求m的值.【详解】由题得椭圆的焦点为(-3,0)和(3,0),所以3=,所以m=4.故答案为4【点睛】本题主要考查椭圆和双曲线的简单几何性质,意在考查学
10、生对这些知识的掌握水平和分析推理能力.14.曲线在点处的切线方程为_【答案】【解析】【分析】求导,可得斜率,进而得出切线的点斜式方程.【详解】由,得,则曲线在点处的切线的斜率为,则所求切线方程为,即.【点睛】求曲线在某点处的切线方程的步骤:求出函数在该点处的导数值即为切线斜率;写出切线的点斜式方程;化简整理.15.双曲线的渐近线方程为_.【答案】【解析】【详解】试题分析:由题,得,双曲线的渐近线方程为考点:双曲线方程及几何性质16.设函数,若在上的最大值为,则_.【答案】【解析】【分析】求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【详解】解:定义域为,在上单调递
11、增,故在上的最大值为故答案为:【点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.17.已知,命題对任意,不等式恒成立;命题存在,使得成立.(1)若为真命题,求的取值范围;(2)若为假,为真,求的取值范围.【答案】(1);(2)【解析】【分析】(1)由题得,解不等式即得解;(2)先由题得,由题得,中一个是真命题,一个是假命题,列出不等式组,解不等式组得解.【详解】(1)对任意,不等式恒成立,当,由对数函数的性质可知当时,的最小值为,解得.因此,若为真命题时,的取值范围是.(2)存在,使得成立,.命题为真时,且为假,或为真,中一
12、个是真命题,一个是假命题.当真假时,则解得;当假真时,即.综上所述,的取值范围为.【点睛】本题主要考查指数对数函数的性质和不等式的恒成立问题的解法,考查复合命题的真假和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.在中,角所对的边分别是且(1)求边的长;(2)若点是边上的一点,且的面积为求的正弦值.【答案】(1)2;(2).【解析】试题分析:(1)由可得,化简可得,由等腰三角形的性质可得结果;(2)由三角形面积得,在中,由余弦定理得,在中,由正弦定理得.试题解析:(1) (2)解得在中,由余弦定理得在中,由正弦定理得.19.已知函数,为实数.(1)若函数在区间上是单调函
13、数,求实数的取值范围;(2)若,求函数的最小值.【答案】(1)m4或m12(2)见解析【解析】【分析】(1)由函数f(x)在区间1,3上是单调函数,可得或;(2)讨论对称轴与已知区间1,1的三种位置关系即可求解【详解】解:f(x)2x2+mx1开口向上,对称轴x,(1)函数f(x)在区间1,3上是单调函数,或,解可得,m4或m12;(2)若即m4时,函数单调递增,f(x)minf(1)1m,若即m4时,函数单调递减,f(x)minf(1)1+m,若1即4m4时,f(x)minf()1【点睛】本题主要考查了二次函数的单调性,对称性及闭区间上的最值求解,体现了分类讨论思想的应用20.已知函数.()
14、当时,证明:有且只有一个零点;()求函数的极值.【答案】()详见解析; ()当时,极大值为,极小值为;当时,无极值;当时,极大值为,极小值为.【解析】【分析】(1)求导,确定函数的单调区间,结合零点存在性定理,即可求证;(2)求导,对分类讨论,求出单调区间,进而确定是否有极值,即可求解.【详解】()当时,定义域为,在上单调递增,至多有一个零点.又,则,在上有且只有一个零点.()由题意得,当时,当时,当时,当时,函数在和上单调递增,在上单调递减,极大值为,极小值为;当时,函数在上单调递增,无极值;当时,当时,当时,当时,函数在和上单调递增,在上单调递减,极大值,极小值为.【点睛】本题考查导数在函
15、数中的应用,涉及到函数的单调性,零点的存在性,以及极值,属于中档题.21.等比数列中,(1)求的通项公式;(2)记为前项和若,求【答案】(1)或 .(2).【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m详解:(1)设的公比为,由题设得由已知得,解得(舍去),或故或(2)若,则由得,此方程没有正整数解若,则由得,解得综上,点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题22.如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.(l)求椭圆的标准方程;(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线【答案】(1) (2)见解析【解析】分析:(1)根据椭经过点,且点到椭圆的两焦点的距离之和为,结合性质 ,列出关于 、 的方程组,求出 、 ,即可得椭圆的标准方程;(2)可设直线的方程为,联立得,设点,根据韦达定理可得,所以点在直线上,又点也在直线上,进而得结果.详解:(1)因为点到椭圆的两焦点的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 存货保管合同模板
- 国有商业土地出让合同范例
- 土地工程合同模板
- 学费交易合同范例
- 劳务施工费合同范例
- 婚庆公司模板合同模板
- 人员运输服务合同范例
- 传统汽车长期租赁合同范例
- 与股东合同范例
- 以技术入股合同范例
- 福建省泉州市2024-2025学年高一上学期11月期中物理试题(无答案)
- 为犯罪嫌疑人提供法律咨询委托协议范例
- 内蒙古包头市昆都仑区第九中学2024-2025学年八年级上学期期中考试道德与法治试题(含答案)
- 软件平台施工组织方案
- 经济师中级考试《经济基础知识》历年真题卷及答案解析
- 2024 smart汽车品牌用户社区运营全案
- 国家开放大学专科《应用写作(汉语)》一平台在线形考(形考任务一至七)试题及答案
- 2024年安徽合肥轨道交通公司招聘笔试参考题库含答案解析
- GB/T 3077-2015合金结构钢
- 单管通信铁塔安装作业指导书ok
- 电气专业方向设计某塑料制品厂总配电所设计
评论
0/150
提交评论