版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、上海市杨浦区2015届高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1函数f(x)=的定义域是_2若集合A=,则AB的元素个数为_3若,则x的值是_4(2x)6展开式中常数项为_(用数字作答)5某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为_6对数不等式(1+log3x)(alog3x)0的解集是,则实数a的值为_7极坐标方程所表示的曲线围成的图形面积为_8如图,根据该程序框图,若输出的y为2,则输入的x的值为
2、_9(1999广东)若正数a,b满足ab=a+b+3,则ab的取值范围是_10已知是不平行的向量,设,则与共线的充要条件是实数k等于_11已知方程x2px+1=0(pR)的两根为x1、x2,若|x1x2|=1,则实数p的值为_12已知从上海飞往拉萨的航班每天有5班,现有甲、乙、丙三人选在同一天从上海出发去拉萨,则他们之中正好有两个人选择同一航班的概率为_13已知nN*,在坐标平面中有斜率为n的直线ln与圆x2+y2=n2相切,且ln交y轴的正半轴于点Pn,交x轴于点Qn,则的值为_14对于自然数N*的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交
3、替地加减各数,例如1,2,4,6,9的交替和是96+42+1=6;则集合1,2,3,4,5,6,7的所有非空子集的交替和的总和为_二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15“a2”是“函数f(x)=x2+ax+1(xR)只有一个零点”的( )A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件16在复平面中,满足等式|z+1|z1|=2的z所对应点的轨迹是( )A双曲线B双曲线的一支C一条射线D两条射线17设反比例函数f(x)=与二次函数g(x)=ax2+bx的图象有且仅有两个
4、不同的公共点A(x1,y1),B(x2,y2),且x1x2,则=( )A2或B2或C2或D2或18如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( )ABCD三.解答题(本大题满分74)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19如图,一条东西走向的大江,其河岸A处有人要渡江到对岸B处,江面上有一座大桥AC,已知B在A的西南方向,C在A的南偏西15,BC=10公里现有两种渡江方案:方案一:开车从大桥AC渡江到C处,然后再到B处;方案二:直接坐船从A处渡江到对岸B处
5、若车速为每小时60公里,船速为每小时45公里(不考虑水流速度),为了尽快到达B处,应选择哪个方案?说明理由20如图,在棱长为1的正方体ABCDA1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点(I)试确定点F的位置,使得D1E平面AB1F;(II)当D1E平面AB1F时,求二面角C1EFA的大小(结果用反三角函数值表示)21已知函数f(x)=是奇函数(1)求t的值;(2)求f(x)的反函数f1(x);(3)对于任意的m0,解不等式:f1(x)log322数列an满足a1=1,a2=r(r0),令bn=anan+1,bn是公比为q(q0,q1)的等比数列,设cn=a2n1+a2n(1)
6、求证:cn=(1+r)qn1;(2)设cn的前n项和为Sn,求的值;(3)设cn前n项积为Tn,当q=时,Tn的最大值在n=8和n=9的时候取到,求n为何值时,Tn取到最小值23已知抛物线C:y2=2px(p0)的焦点F,线段PQ为抛物线C的一条弦(1)若弦PQ过焦点F,求证:为定值;(2)求证:x轴的正半轴上存在定点M,对过点M的任意弦PQ,都有为定值;(3)对于(2)中的点M及弦PQ,设,点N在x轴的负半轴上,且满足,求N点坐标上海市杨浦区2015届高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一
7、律得零分1函数f(x)=的定义域是2x1考点:函数的定义域及其求法 专题:函数的性质及应用分析:只需被开方数为非负数、分母不为零同时成立即可解答:解:根据题意,只需,即,解得2x1,故答案为:2x1点评:本题考查函数的定义域,属于基础题2若集合A=,则AB的元素个数为3考点:交集及其运算 专题:集合分析:集合A表示长轴为,短轴为1的椭圆内部的点集,B表示整数集,画出相应的图形,如图所示,找出AB的元素个数即可解答:解:如图所示,由图形得:AB=(0,0),(1,0),(1,0),共3个元素故答案为:3点评:此题考查了交集及其运算,利用了数形结合的思想,熟练掌握交集的定义是解本题的关键3若,则x
8、的值是log23考点:二阶矩阵;有理数指数幂的化简求值 专题:矩阵和变换分析:根据矩阵的定义直接计算即可解答:解:,4x22x=3,化简得(2x)222x3=0,解得2x=3或1(舍),从而,解得x=log23,故答案为:log23点评:本题考查矩阵的计算,解对数方程,弄清矩阵的涵义是解题的关键,属于基础题4(2x)6展开式中常数项为60(用数字作答)考点:二项式定理 分析:用二项展开式的通项公式得展开式的第r+1项,令x的指数为0得展开式的常数项解答:解:(2x)6展开式的通项为=令得r=4故展开式中的常数项故答案为60点评:二项展开式的通项公式是解决二项展开式中特殊项问题的工具5某射击选手
9、连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为0.032考点:极差、方差与标准差 专题:概率与统计分析:先计算数据的平均数后,再根据方差的公式计算解答:解:数据9.7,9.9,10.1,10.2,10.1的平均数=10,方差=(0.09+0.01+0.01+0.04+0.01)=0.032故答案为:0.032点评:本题考查方差的定义一般地设n个数据,x1,x2,xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立6对数不等式(1+log3x)(alog3x)0的解集是,则实数a的值为2考点:指、对数不等式的解
10、法 专题:不等式的解法及应用分析:先解出不等式,再结合已知解集,可得结果解答:解:将对数不等式两边同时乘以1,得(log3x+1)(log3xa)0,即(log3x)(log3x)0,所以此不等式的解为:或,其解集为解集是,=2,故答案为:2点评:本题考查对数不等式的解法,属于中档题7极坐标方程所表示的曲线围成的图形面积为考点:简单曲线的极坐标方程 专题:坐标系和参数方程分析:利用把极坐标方程化为直角坐标方程,利用圆的面积计算公式即可得出解答:解:化为,配方为+=因此极坐标方程所表示的曲线为圆心为,半径r=的圆其围成的图形面积S=r2=故答案为:点评:本题考查了圆的极坐标方程化为直角坐标方程、
11、圆的面积计算公式,考查了推理能力与计算能力,属于基础题8如图,根据该程序框图,若输出的y为2,则输入的x的值为4考点:程序框图 专题:图表型;算法和程序框图分析:模拟执行程序框图,得其功能是求分段函数y=的值,由输出的y为2,分情况讨论即可得解解答:解:模拟执行程序框图,可得其功能是求分段函数y=的值,若输出的y为2,则x0时,有=2,解得:x=4当x0时,有2x=2,解得x=1(舍去)故答案为:4点评:本题考查了分支结构的程序框图,根据框图的流程分析得到程序的功能是解题的关键,属于基础题9(1999广东)若正数a,b满足ab=a+b+3,则ab的取值范围是分析:根据所给的方程,当判别式不小于
12、0时和小于0时,用求根公式表示出两个根的差,根据差的绝对值的值做出字母p的值解答:解:当=p240,即p2或p2,由求根公式得|x1x2|=1,得p=,当=p240,即2p2,由求根公式得|x1x2|=1,得p=综上所述,p=或p=故答案为:或点评:本题考查一元二次方程根与系数的关系,本题解题的关键是对于判别式与0的关系的讨论,方程有实根和没有实根时,两个根的表示形式不同,本题是一个易错题12已知从上海飞往拉萨的航班每天有5班,现有甲、乙、丙三人选在同一天从上海出发去拉萨,则他们之中正好有两个人选择同一航班的概率为考点:列举法计算基本事件数及事件发生的概率 专题:概率与统计分析:根据乘法原理得
13、出甲、乙、丙三人选5班航班的总共事件为53,利用排列组合知识得出:他们之中正好有两个人选择同一航班”的有60个,再运用概率知识求解即可解答:解:设“他们之中正好有两个人选择同一航班”的事件为B,根据题意得出甲、乙、丙三人选5班航班的总共事件为53,B事件的基本事件的个数为=60P(B)=,故答案为:点评:本题考查了古典概率问题的事件的求解,关键是确定基本事件的个数,难度不大,属于容易题13已知nN*,在坐标平面中有斜率为n的直线ln与圆x2+y2=n2相切,且ln交y轴的正半轴于点Pn,交x轴于点Qn,则的值为考点:极限及其运算;直线与圆的位置关系 专题:直线与圆分析:设切线ln的方程为:y=
14、nx+m,由于直线ln与圆x2+y2=n2相切,可得=n,取m=n可得切线ln的方程为:y=nx+n,可得Pn,Qn,可得|PnQn|再利用数列极限的运算法则即可得出解答:解:设切线ln的方程为:y=nx+m,直线ln与圆x2+y2=n2相切,=n,取m=n切线ln的方程为:y=nx+n,Pn,Qn|PnQn|=1+n2=故答案为:点评:本题考查了直线的方程、直线与圆的相切性质、点到直线的距离公式、两点之间的距离公式,数列极限的运算法则,考查了推理能力与计算能力,属于中档题14对于自然数N*的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交替地加减
15、各数,例如1,2,4,6,9的交替和是96+42+1=6;则集合1,2,3,4,5,6,7的所有非空子集的交替和的总和为448考点:集合的表示法;进行简单的合情推理 专题:新定义;集合分析:根据“交替和”的定义:求出S2、S3、S4,并根据其结果猜测集合N=1,2,3,n的每一个非空子集的“交替和”的总和Sn即可解答:解:由题意,S2表示集合N=1,2的所有非空子集的“交替和”的总和,又1,2的非空子集有1,2,2,1,S2=1+2+21=4;S3=1+2+3+(21)+(31)+(32)+(32+1)=12,S4=1+2+3+4+(21)+(31)+(41)+(32)+(42)+(43)+(
16、32+1)+(42+1)+(43+1)+(43+2)+(43+21)=32,根据前4项猜测集合N=1,2,3,n的每一个非空子集的“交替和”的总和Sn=n2n1,所以S7=7271=726=448,故答案为:448点评:本题主要考查了数列的应用,同时考查了归纳推理的能力二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15“a2”是“函数f(x)=x2+ax+1(xR)只有一个零点”的( )A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断 专题:
17、函数的性质及应用;简易逻辑分析:根据充分条件和必要条件的定义结合一元二次函数的性质进行判断即可解答:解:若函数f(x)=x2+ax+1(xR)只有一个零点,则判别式=a24=0,解得a=2或a=2,则“a2”是“函数f(x)=x2+ax+1(xR)只有一个零点”的既非充分又非必要条件,故选:D点评:本题主要考查充分条件和必要条件的判断,利用一元二次函数的性质是解决本题的关键16在复平面中,满足等式|z+1|z1|=2的z所对应点的轨迹是( )A双曲线B双曲线的一支C一条射线D两条射线考点:轨迹方程 专题:计算题;数系的扩充和复数分析:利用复数的几何意义,即可判断出等式|z+1|z1|=2的z所
18、对应点的轨迹解答:解:复数z满足|z+1|z1|=2,则z对应的点在复平面内表示的是到两个定点F1(1,0),F2(1,0)的距离之差为常数2,所以z对应的点在复平面内表示的图形为以F2(1,0)为起点,方向向右的一条射线故选:C点评:熟练掌握复数的几何意义是解题的关键17设反比例函数f(x)=与二次函数g(x)=ax2+bx的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),且x1x2,则=( )A2或B2或C2或D2或考点:二次函数的性质 专题:函数的性质及应用分析:根据已知条件可以画出f(x),g(x)的图象,由图象可得到方程,即方程ax3+bx21=0有两个二重根,和一个
19、一重根,所以可设二重根为c,另一根为d所以上面方程又可表示成:a(xc)2(xd)=ax3(ad+2ac)x2+(2acd+ac2)xac2d=0,所以便得到2acd+ac2=0,所以c=2d所以再根据图象可得解答:解:根据题意可画出f(x),g(x)可能的图象:A,B两点的横坐标便是方程即ax3+bx21=0的解;由上面图象知道A,B两点中有一个点是f(x),g(x)图象的切点,反应在方程上是方程的二重根;所以可设二重根为c,另一根为d,则上面方程可变成:a(xc)2(xd)=0;将方程展开:ax3(ad+2ac)x2+(2acd+ac2)xac2d=0;2acd+ac2=0;由图象知a,c
20、0;由上面式子得:c=2d;由图象知x1=c,x2=d,或x1=d,x2=c;故选:B点评:考查曲线的公共点和两曲线方程形成方程组的解的关系,以及方程二重根的概念,知道了方程的根会把方程表示成因式乘积的形式,两多项式相等时对应系数相等18如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( )ABCD考点:正弦函数的图象 专题:压轴题;数形结合分析:根据题意和图形取AP的中点为D,设DOA=,在直角三角形求出d的表达式,根据弧长公式求出l的表达式,再用l表示d,根据解析式选出答案解答:解:如图:取AP
21、的中点为D,设DOA=,则d=2|OA|sin=2sin,l=2|OA|=2,d=2sin,根据正弦函数的图象知,C中的图象符合解析式故选:C点评:本题考查了正弦函数的图象,需要根据题意和弧长公式,表示出弦长d和弧长l的解析式,考查了分析问题和解决问题以及读图能力三.解答题(本大题满分74)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19如图,一条东西走向的大江,其河岸A处有人要渡江到对岸B处,江面上有一座大桥AC,已知B在A的西南方向,C在A的南偏西15,BC=10公里现有两种渡江方案:方案一:开车从大桥AC渡江到C处,然后再到B处;方案二:直接坐船从A处渡江到
22、对岸B处若车速为每小时60公里,船速为每小时45公里(不考虑水流速度),为了尽快到达B处,应选择哪个方案?说明理由考点:向量的三角形法则 专题:计算题分析:分别计算两种方案的时间即可解答:解:如图,过A作AD垂直BC交于D,根据题意知CAD=15,BAD=45,设CD为x公里,则有AD=,由于tan15=tan(4530)=,故AD=(2)x,BC=10公里,BAD=45,BD=AD,即(2)x=x+10,解得x=CD=,从而AD=(2)()=5+,AC=1014.14,AB=(5+)=19.32,下面分别计算两种方案所要花费的时间:方案一:0.4023(时);方案二:0.4293(时);显然
23、选择方案一点评:本题考查速度、路程、时间之间的关系,属于基础题20如图,在棱长为1的正方体ABCDA1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点(I)试确定点F的位置,使得D1E平面AB1F;(II)当D1E平面AB1F时,求二面角C1EFA的大小(结果用反三角函数值表示)考点:直线与平面垂直的性质;反三角函数的运用;与二面角有关的立体几何综合题 专题:证明题;综合题;压轴题;探究型;向量法分析:(I)法一:几何法:要D1E平面AB1F,先确定D1E平面AB1F内的两条相交直线,由三垂线定理易证D1EAB1,同理证明D1EAF即可法二:代数法:建立空间直接坐标系,运用空间向量的数
24、量积等于0,来证垂直(II)法一:求二面角C1EFA的大小,转化为求C1EFC的大小,利用三垂线定理方法:E、F都是所在线的中点,过C连接AC,设AC与EF交于点H,则CHEF,连接C1H,则CH是C1H在底面ABCD内的射影C1HC是二面角C1EFC的平面角求解即可法二:找出两个平面的法向量,运用空间向量数量积公式求出二面角的余弦值,再求其角解答:解法一:(I)连接A1B,则A1B是D1E在面ABB1A;内的射影AB1A1B,D1EAB1,于是D1E平面AB1FD1EAF连接DE,则DE是D1E在底面ABCD内的射影D1EAFDEAFABCD是正方形,E是BC的中点当且仅当F是CD的中点时,
25、DEAF,即当点F是CD的中点时,D1E平面AB1F(II)当D1E平面AB1F时,由(I)知点F是CD的中点又已知点E是BC的中点,连接EF,则EFBD连接AC,设AC与EF交于点H,则CHEF,连接C1H,则CH是C1H在底面ABCD内的射影C1HEF,即C1HC是二面角C1EFC的平面角在RtC1CH中,C1C=1,CH=AC=,tanC1HC=C1HC=arctan,从而AHC1=arctan2故二面角C1EFA的大小为解法二:以A为坐标原点,建立如图所示的空间直角坐标系(1)设DF=x,则A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B(1,0,1),D1
26、(0,1,1),E,F(x,1,0)=11=0,即D1EAB1于是D1E平面AB1FD1EAF即x=故当点F是CD的中点时,D1E平面AB1F(2)当D1E平面AB1F时,F是CD的中点,又E是BC的中点,连接EF,则EFBD连接AC,设AC与EF交于点H,则AHEF连接C1H,则CH是C1H在底面ABCD内的射影C1HEF,即AHC1是二面角C1EFA的平面角,=,即故二面角C1EFA的大小为arccos点评:本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力空间向量计算法容易出错21已知函数f(x)=是奇函数(1)求t的值;(2)求f(x)的反函数f1(x);(3)对
27、于任意的m0,解不等式:f1(x)log3考点:反函数;函数奇偶性的性质;其他不等式的解法 专题:函数的性质及应用分析:(1)由函数f(x)=是奇函数,可得f(0)=0,解得t,并验证是否满足条件即可(2)由(1)可得:y=f(x)=1,可得y(1,1)化为3x=(y1),把x与y互换可得,两边取对数即可得出反函数(3)对于任意的m0,解不等式:f1(x)log3(x(1,1)化为,又x(1,1)化为m1x,对m分类讨论即可得出解答:解:(1)函数f(x)=是奇函数,f(0)=0,解得t=1,经过验证满足条件,t=1(2)由(1)可得:y=f(x)=1,可得y(1,1)解得3x=(y1),把x
28、与y互换可得,y=,(x(1,1)f(x)的反函数f1(x)=,(x(1,1)(3)对于任意的m0,解不等式:f1(x)log3(x(1,1)即log3,又x(1,1)m1x,当0m2时,解得1x1m当m2时,解得1x1不等式:f1(x)log3的解集为:当0m2时,解集为(1m,1);当m2时,解集为(1,1)点评:本题考查了反函数的求法、指数函数与对数函数的单调性、不等式的解法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题22数列an满足a1=1,a2=r(r0),令bn=anan+1,bn是公比为q(q0,q1)的等比数列,设cn=a2n1+a2n(1)求证:cn=(1
29、+r)qn1;(2)设cn的前n项和为Sn,求的值;(3)设cn前n项积为Tn,当q=时,Tn的最大值在n=8和n=9的时候取到,求n为何值时,Tn取到最小值考点:等比数列的前n项和;极限及其运算;数列的求和 专题:等差数列与等比数列分析:(1)根据题意得出=q(n2),判断出奇数项,偶数项分别成等比数列,运用等比数列的通项公式求解即可(2)运用等比数列的求和公式得出q=1时,Sn=(1+r)n,=0,q1时,Sn=,=,分类讨论求解即可(3)利用条件得出(1+r)8()28=(1+r)9()36,r=281=255,Tn=(256)n(2)=(1)2,再根据函数性质得出最小项,注意符号即可解
30、答:解:(1)bn=anan+1,bn是公比为q(q0,q1)的等比数列,因为数列anan+1是一个以q(q0,q1)为公比的等比数列因此=q,所以=q(n2),即=q(n2),奇数项,偶数项分别成等比数列设cn=a2n1+a2ncn=1qn1+rqn1=(1+r)qn1bn=(1+r)qn1(2)q=1时,Sn=(1+r)n,=0q1时,Sn=,=若0q1或1q0时,=若q1或q1时,=0=(3)设cn前n项积为Tn,当q=时,Tn=(1+r)nTn的最大值在n=8和n=9的时候取到,(1+r)8()28=(1+r)9()36,r=281=255,Tn=(256)n(2)=(1)2,根据数列的函数性质得出n=7,n=10时,Tn的最小值为235点评:本题主要考查了利用数列的递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB51T 1741-2014 川南黑山羊 规范
- DB51T 1619-2013 政务服务中心 计算机及网络管理规范
- DB51T 1154-2010 无公害中药材 杜仲生产技术规程
- (规划设计)工业以太网项目可行性研究报告
- (施工建设)建筑膜板纸项目可行性研究报告
- 新建欧式封闭型端子座项目立项申请报告
- 2024-2030年有机抹茶粉搬迁改造项目可行性研究报告
- 2024-2030年新版中国冲击夯项目可行性研究报告
- 2024-2030年撰写:中国金融机具配套软件行业发展趋势及竞争调研分析报告
- 2024-2030年撰写:中国无隔板超高效过滤器项目风险评估报告
- 国家开放大学电大本科《小学数学教学研究》期末题库和答案
- 预防住院患者跌倒坠床的防范措施及宣教
- GB/T 3279-2023弹簧钢热轧钢板和钢带
- 《学习共同体-走向深度学习》读书分享
- 大班健康《小小营养师》
- 产品4五子衍宗丸
- 吉林省运动员代表协议书
- BSCI验厂全套程序文件
- 《人工智能与计算机基础》课程考试复习题库(含答案)
- 2023-2024学年四川省乐山市小学语文三年级期末自测试题详细参考答案解析
- 对外汉语教学法知到章节答案智慧树2023年西北师范大学
评论
0/150
提交评论