实际问题与二次函数第二课时_第1页
实际问题与二次函数第二课时_第2页
实际问题与二次函数第二课时_第3页
实际问题与二次函数第二课时_第4页
实际问题与二次函数第二课时_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级上册,22.3实际问题与二次函数(第2课时),二次函数是单变量最优化问题的数学模型,如生活中涉及的求最大利润,最大面积等这体现了数学的实用性,是理论与实践结合的集中体现本节课主要来研究利润问题,课件说明,学习目标:能够分析和表示实际问题中,变量之间的二次函数关系,并运用二次函数的顶点坐标求出实际问题的最大(小)值 学习重点:探究利用二次函数的最大值(或最小值)解决实际问题的方法,课件说明,问题1 解决上节课所讲的实际问题时,你用到了什么知识?所用知识在解决生活中问题时,还应注意哪些问题?,1复习二次函数解决实际问题的方法,1复习二次函数解决实际问题的方法,2列出二次函数的解析式,并根据自

2、变量的实际意义,确定自变量的取值范围; 3在自变量的取值范围内,求出二次函数的最大值或最小值.,归纳:1由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2 + bx + c 有最小(大) 值,问题2 某商品现在的售价为每件 60 元,每星期可卖出300件市场调查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件;每降价 1 元,每星期可多卖出 20 件已知商品的进价为每件 40 元,如何定价才能使利润最大?,2探究二次函数利润问题,(1) 题目中有几种调整价格的方法? (2) 题目涉及哪些变量?哪一个量是自变量?哪些量随之发生了变化

3、?哪个量是函数? (3) 当每件涨 1 元时,售价是多少?每星期销量是多少?成本是多少?销售额是多少?利润呢? (4) 最多能涨多少钱呢? (5) 当每件涨 x 元时,售价是多少?每星期销量是多少?成本是多少?销售额是多少?利润 y 呢?,2探究二次函数利润问题,分析:,调整价格包括涨价和降价两种情况,先来看涨价的情况:设每件涨价x元,则每星期售出商品 的利润y也随之变化,我们先来确定y与x的函数关系式.涨 价x元,则每星期少卖 件,实际卖出 件, 每件利润为 元,因此,所得利润 为 元.,10 x,(300-10 x),(60+x-40),(60+x-40)(300-10 x),y=(60+

4、x-40)(300-10 x),( 6)这是一个什么函数?自变量取值范围是什么?这个函数有最大值吗?,2探究二次函数利润问题,(0 x30),即y=-10(x-5)2+6250,怎样确定x的取值范围,可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值.由公式可以求出顶点的横坐标.,所以,当定价为65元时,利润最大,最大利润为6250元,问题3 x = 5 是在自变量取值范围内吗?为什么? 如果计算出的 x 不在自变量取值范围内,怎么办?,(1) x = 2.5 是在自变量取值范围内吗? (2)由上面的讨论及现在的

5、销售情况, 你知道应如何定价能使利润最大了吗?,问题4 在降价情况下,最大利润是多少?请你参考上述的讨论,自己得出答案,2探究二次函数利润问题,解:设降价x元时利润最大,则每星期可多卖20 x件,实际卖出(300+20 x)件,销售额为(60-x)(300+20 x)元,买进商品需付40(300+20 x)元,因此,得利润,答:定价为 元时,利润最大,最大利润为6125元,(1)先分析问题中的数量关系、变量和常量,列出函数关系式. (2)研究自变量的取值范围. (3)研究所得的函数. (4)检验 x的取值是否在自变量的取值范围内、结果的合理性等,并求相关的值. (5)解决提出的实际问题.,解决

6、关于函数实际问题的一般步骤,(配方变形,或利用公式求它的最大值或最小值),反馈练习 1.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个. (1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_元,这种篮球每月的销售量是 个(用x的代数式表示) (2)8000元是否为每月销售篮球的最大利润? 如果是,说明理由,如果不是,请求出最大月利润, 此时篮球的售价应定为多少元?,2.(2010荆门中考)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元

7、,平均每天就可以多售出100件. (1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入购进成本),3.(2011菏泽中考)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元. (1).求一次至少

8、买多少只,才能以最低价购买? (2).写出该专卖店当一次销售x(只)时,所获利润y(元)与x之间的函数关系式,并写出自变量x的取值范围; (3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?,4.(2010安徽中考)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售九(1)班数学建模兴趣小组根据调查,整理出第x天(1x20且x为整数)的捕捞与销售的相关信息如表:,(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?,(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且 能在当天全部售出,求第x天的收入y(元)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论