




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复习,1、周期信号的频谱 2、周期信号频谱的特点 3、周期信号的功率谱,3.4 非周期信号的频谱,前已指出,当周期趋于无限大时,相邻谱线的间隔趋近于无穷小,从而信号的频谱密集成为连续频谱。同时,各频率分量的幅度也都趋近于无穷小,不过,这些无穷小量之间仍保持一定的比例关系。 为了描述非周期信号的频谱特性,引入频谱密度的概念。,一、傅里叶变换,.,当周期 趋近于无限大时, 趋近于无穷小,取其 为 ,而 将趋近于 , 是变量,当 时,它是离散值,当 趋近于无限小时,它 就成为连续变量,取为 ,求和符号改为积分。,由式 , 可得,如何求频谱密度函数?,于是当 时,式,成为,(1)式称为函数 的傅里叶变
2、换 。,(2)式称为函数 的傅里叶逆变换。,称为 的频谱密度函数或频谱函数. 称为 的原函数。,简记为,与周期信号的傅里叶级数相类似,在f(t)是实函数时, F()、()与R()、 X()相互之间存在下列关系:,在f(t)是实函数时: (1) 若f(t)为t的偶函数,即f(t)=f(-t),则f(t)的频谱函数F(j)为的实函数, 且为的偶函数。 (2) 若f(t)为t的奇函数,即f(-t)=-f(t),则f(t)的频谱函数F(j)为的虚函数,且为的奇函数。 与周期信号类似,也可将非周期信号的傅里叶变换表示式改写成三角函数的形式,即,结论:,上式表明,非周期信号可看作是由不同频率的余弦“分 量
3、”所组成,它包含了频率从零到无限大的一切频率“分 量”。由式可见, 相当于各 “分量”的振幅,它是无穷小量。,所以信号的频谱不能再用幅度表示,而改用密度函 数来表示。类似于物质的密度是单位体积的质量,函数 可看作是单位频率的振幅,称 为频谱密度函数。,例3.4-1 下图所示为门函数(或称矩形脉冲),用符号 表示,其宽度为 ,幅度为 。求其频谱函数。,二、 典型信号的傅里叶变换,解: 如图所示的门函数可表示为,其频谱函数为,图 3.4-1 门函数及其频谱,一般而言,信号的频谱函数需要用幅度谱 和相位 谱 两个图形才能将它完全表示出来。但如果频谱 函数是实函数或虚函数,那么只用一条曲线即可。 为负
4、代表相位为 , 为正代表相位为 。,由图可见,第一个零值的角频率为 (频率 )。,当脉冲宽度减小时,第一个零值频率也相应增高。 对于矩形脉冲,常取从零频率到第一个零值频率 之间的频段为信号的频带宽度。,这样,门函数的带宽 ,脉冲宽度越窄, 其占有的频带越宽。,(时域越窄,频域越宽),例3.4-2 求下图所示的单边指数函数的频谱函数.,解: 将单边指数函数的表示式 代入到式,中得:,这是一复函数,将它分为模和相角两部分:,幅度谱和相位谱分别为:,频谱图如下图所示:,图 3.4-3 单边指数函数,例 3.4-3 求下图所示双边指数信号的频谱函数。,解:上图所示的信号可表示为:,或者写为,将 代入到式 , 可得其频谱函数为:,其频谱图如下所示 :,实偶,实偶,例3.4-4 求下图所示信号的频谱函数。,其频谱图如下图所示:,实奇,虚奇,例3.4-5 求冲激函数的频谱,即单位冲激函数的频谱是常数 ,如下图所示。其频 谱密度在区间 处处相等,常称为“均匀谱” 或“白色频谱”。,冲激函数一阶导数的频谱函数为 :,按冲激函数导数的定义 :,可知,例3.4-6 求单位直流信号的频谱,所以,例3.4-7 求符号函数的频谱,则它的频谱函数也是 的频谱函数 ,当 时的极限。,我们已知 的频谱函数为:,它是 的奇函数,在 处 。,因此,当 趋近于零时,有 :,于是得,它在 处的值等于零。,例3.4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东大学《中国古代文学(二)》2023-2024学年第二学期期末试卷
- 四川工业科技学院《篮球4》2023-2024学年第二学期期末试卷
- 广州美术学院《俄语II(第二外语)》2023-2024学年第二学期期末试卷
- 专业工种劳务承包合同
- 建施工合同知识点
- 建筑材料采购合同书
- 劳务分包合同内容包括
- 人工费劳务分包合同
- 岗位聘用合同书
- 药理练习试卷附答案
- 贵州国企招聘2025六盘水市公共交通有限公司招聘合同制驾驶员30人笔试参考题库附带答案详解
- 预防毒品教育主题班会教案
- 2025年《职业病防治法》宣传周知识考试题库300题(含答案)
- 贵阳语文初一试题及答案
- 机器人舞蹈表演行业深度调研及发展战略咨询报告
- 2025年北京市朝阳区高三一模地理试卷(含答案)
- 2025温州商学院辅导员考试题库
- 山西省晋中市榆次区2025年九年级中考一模数学试卷(原卷版+解析版)
- 2025年广东省佛山市南海区中考一模英语试题(原卷版+解析版)
- 论公安机关刑事立案制度:现状、问题与优化路径
- 2023-2024学年广东省广州市越秀区执信中学七年级(下)期中数学试卷(含答案)
评论
0/150
提交评论