


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.2 两角和与差的三角函数知识梳理1.两角和与差的余弦公式(1)公式:cos(-)=coscos+sinsin;cos(+)=coscos-sinsin.(2)理解和记忆:上述公式中的、都是任意角.和差角的余弦公式不能按分配律展开,即cos(a)coscos.公式使用时不仅要会正用,还要能够逆用公式,在很多时候,逆用更能简洁地处理问题.如由cos50cos20+sin50sin20能迅速地想到cos50cos20+sin50sin20=cos(50-20)= cos30=.第一章中所学的部分诱导公式可通过本节公式验证.记忆:公式右端的两部分为同名三角函数积,连接符号与左边角的连接符号相反.2
2、.两角和与差的正弦公式(1)公式:sin(+)=sincos+cossin;sin(-)=sincos-cossin.(2)理解和记忆:上面公式中的、均为任意角.与和差角的余弦公式一样,公式对分配律不成立,即sin()sinsin.和差公式是诱导公式的推广,诱导公式是和差公式的特例.如sin(2-)=sin2cos-cos2sin=0cos-1sin=-sin.当或中有一个角是的整数倍时,通常使用诱导公式较为方便.使用公式时不仅要会正用,还要能够逆用公式,如化简sin(+)cos-cos(+)sin,不要将sin(+)和cos(+)展开,而采用整体思想,进行如下变形:sin(+)cos-cos
3、(+)sin=sin(+)-=sin,这也体现了数学中的整体原则.记忆时要与两角和与差的余弦公式区别开来,两角和与差的余弦公式的右端的两部分为同名三角函数积,连接符号与左边的连接符号相反;两角和与差的正弦公式的右端的两部分为异名三角函数积,连接符号与左边的连接符号相同.3.两角和与差的正切(1)公式:tan(+)=;tan(-)=.(2)理解和记忆:公式成立的条件:k+,k+,+k+或-k+,以上kZ.当tan、tan、tan()不存在时,可以改用诱导公式解决.两角和与差的正切同样不仅可以正用,而且可以逆用、变形用,逆用和变形用都是化简三角恒等式的重要手段,如tan+tan=tan(+)(1-
4、tantan)就可以解决诸如tan25+tan20+tan25tan20的问题.所以在处理问题时要注意观察式子的特点,巧妙运用公式或其变形,使变换过程简单明了.与和差角的弦函数公式一样,公式对分配律不成立,即tan(+)tan+tan.知识导学要学好本节有必要复习任意角的三角函数和平面向量的数量积;本节的重点是公式的应用,难点是公式的变形应用;在学习过程中,要善于应用联系的观点看待问题.难疑突破1.形如函数f(x)=asinx+bcosx(ab0)的最值是什么?剖析:受思维定势的影响,总是认为y=sinx和y=cosx的最大值都是1,它们的最小值都是-1,则函数f(x)的最大值是|a|+|b|
5、,最小值是 -|a|-|b|,其实不然.其突破口是分析y=sinx和y=cosx取最值时,自变量x取值情况. 当x=2k+ (kZ)时,y=sinx取最大值1,当x=2k- (kZ)时,y=sinx取最小值-1;当x=2k(kZ)时,y=cosx取最大值1,当x=2k+(kZ)时,y=cosx取最小值-1;由此看y=sinx取最值时,y=cosx=0,而y=cosx取最值时,y=sinx=0.所以y=sinx和y=cosx不能同时取最值,因此这样求最值是错误的. 求形如函数f(x)=asinx+bcosx(ab0)的最值,常用方法是化归为求y=Asin(x+)+b的最值.例如:求函数f(x)=
6、2sinx-cosx,xR的最值.可将函数解析式化为y=Asin(x+)后,再求最值.f(x)=2sinx-cosx=4(sinx-cosx)=4(sinxcos-cosxsin)=4sin(x-),函数f(x)的最大值是4,最小值是-4.很明显函数f(x)的最大值不是2,最小值不是-2-.下面讨论函数f(x)=asinx+bcosx(ab0),xR的最值.f(x)=asinx+bcosx=(sinx+cosx),()2+()2=1,可设cos=,sin=,则tan=(又称为辅助角).f(x)= (sinxcos+cosxsin)= sin(x+).当xR时, f(x)的最大值是,最小值是-.特别是当=1,时,是特殊角,此时常取,.对于形如y=asinx+bcosx(ab0)的式子引入辅助角化归为y=Asin(x+)的形式,可进行三角函数的化简,求周期、最值等,这是高考和模拟的必考内容之一.例如:2006江苏南京一模,7 若函数f(x)=sinax+cosax(a0)的最小正周期为1,则它的图像的一个对称中心为( )A.(,0) B.(0,0) C.(-,0) D.(,0)思路分析:化为y=Asin(x+)形式,再讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国短绒毛靠垫数据监测研究报告
- 浅析无现金社会下移动支付的挑战与机遇
- 2025年02月金华事业单位公开招聘金华市就业服务中心编外工作人员公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 社区文化与道德教育的融合发展
- 科技在保障老年人食品质量与安全中的应用案例分析
- 生物多样性教育在生态旅游中的重要性
- 医疗专利合同范本
- 电子病历与医疗物资的配送管理
- 电子产品的可持续设计与商业成功案例
- 科技引领未来AI在语言学习中的运用
- 富氢水水素水推广方法
- 煤矿职业卫生培训课件2023
- 某小学申报广州市义务教育规范化学校自评分说明
- 面神经炎课件完整版
- 根据铜价计算各种电缆参考价格
- 湘教版五年级下册美术教学计划
- WB/T 1066-2017货架安装及验收技术条件
- SB/T 10446-2007成品油批发企业管理技术规范
- 沥青路面施工质量控制要点课件
- 对建筑工程施工转包违法分包等违法行为认定查处管理课件
- 雀巢碘超标危机公关分析
评论
0/150
提交评论