版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教版课件系列,高中数学 必修2,2.1.2空间中直线与直线之间的位置关系,教学目的,1.会判断两条直线的位置关系,学会用图形语言、符号语言表示三种位置关系. 2.理解公理四,并能运用公理四证明线线平行. 3掌握空间两直线的位置关系,掌握异面直线的概念,会用反证法和异面直线的判定定理证明两直线异面; 4.掌握异面直线所成角的概念及异面直线垂直的概念,能求出一些较特殊的异面直线所成的角,复习引入:,1、同一平面内不重合两条直线有几种位置关系?,2、在同一平面内,同平行于一条直线的两条直线有什么位置关系?,(1)、相交:有且仅有一个公共点。,(2)、平行:在同一平面内没有公共点。,互相平行,
2、提出问题:空间中的两条直线呢?,1.空间中两条直线的位置关系,观察:,观察教室内的日光灯管所在直线与黑板的左右两侧所在的直线,想一想:它们相交吗?平行吗?共面吗?,观察上方体的棱所在 直线,回答类似的问题.,思考:我们把具有上述特征的两条直线取个怎样的名字才好呢?,异面直线的定义:,我们把不同在任何一个平面内的两条直线叫做异面直线(skewlines)。,想一想:怎样通过图形来表示异面直线?,为了表示异面直线a,b不共面的特点,作图时,通常用一个或两个平面衬托。如下图:,想一想,做一做:,1.已知M、N分别是长方体的棱C1D1与CC1上的点,那么MN与AB所在的直线是异面直线吗?,2. 下图是
3、一个正方体的展开图,如果将它还原成正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有几对?,想一想,做一做:,三对,AB与CD AB与GH EF与GH,3.,空间两条直线的位置关系有且只有三种,没有,只有一个,没有,共面,不共面,共面,空间中两条直线的位置关系,2.空间两平行直线,提出问题:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?,公理4:平行于同一条直线的两条直线互相平行。,公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。,公理4作用:判断空间两条直线平行的依据。,ab cb,ac,符号表示:设空间中的三条
4、直线分别为a, b, c,若,想一想:空间中,如果两条直线都与第三条直线垂直,是否也有类似的规律?,例题示范,例1: 在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。 求证:四边形EFGH是平行四边形。,分析:,欲证EFGH是一个平行四边形,只需证EHFG且EHFG,E,F,G,H分别是各边中点,连结BD,只需证: EH BD且EH BD FG BD且FG BD,例题示范,例1: 在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。 求证:四边形EFGH是平行四边形。,变式一: 在例2中,如果再加上条件AC=BD,那么四边形EFGH是什么图形?,
5、E,H,F,G,分析: 在例题2的基础上我们只需要证明平行四边形的两条邻边相等。,菱形,变式二:,空间四面体A-BCD中,E,H分别是AB,AD的中点,F,G分别是CB,CD上的点,且 , 求证:四边形ABCD为梯形.,A,B,C,D,E,H,F,G,分析:需要证明四边形ABCD有 一组对边平行,但不相等。,3.等角定理,提出问题:在平面上,我们容易证明“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”。在空间中,结论是否仍然成立呢?,观察思考:如图,ADC与ADC、ADC与ABC的两边分别对应平行,这两组角的大小关系如何?,3.等角定理,定理:空间中如果两个角的两边分别对应
6、平行,那么这两个角相等或互补。,3.等角定理,定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。,定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.,4.异面直线所成的角,如图,已知两条异面直线a,b,经过空间任一点O作直线aa,bb,我们把a与b所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角)。,为了简便,点O通常取在两条异面直线中的一条上,例如,取在直线b上,然后经过点O作直线aa,a和b所成的锐角(或直角)就是异面直线a与b所成的角。,想一想:a与b所成角的大小与点O的位置有关吗?,4.异面直线所成的角,如果两条异面直线
7、所成的角为直角,就说两条直线互相垂直,记作ab。,5.异面直线的判定定理,异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线,与 是异面直线,例题示范,例2、如图,已知正方体ABCDABCD中。 (1)哪些棱所在直线与直线BA是异面直线? (2)直线BA和CC的夹角是多少? (3)哪些棱所在的直线与直线AA垂直?,解:(1)由异面直线的判定方法可知,与直线,成异面直线的有直线,,,例题示范,例2、如图,已知正方体ABCDABCD中。 (1)哪些棱所在直线与直线BA是异面直线? (2)直线BA和CC的夹角是多少? (3)哪些棱所在的直线与直线AA垂直?,解:(
8、2)由 可知, 等于异面直线 与 的夹角,所以异面直线 与 的夹角为450 。,(3) 直线,与直线 都垂直.,练一练,巩固新知:P48页练习1,2题。,例3:如图, 是平面 外的一点 分别是 的重心, 求证: 。,证明:连结 分别交 于 ,连结 , G,H分别是ABC,ACD的重心,M,N分别是BC,CD的中点, MN/BD, 又 GH/MN,由公理4知GH/BD.,练习反馈:,1. 判断: (1)平行于同一直线的两条直线平行.( ) (2)垂直于同一直线的两条直线平行.( ) (3)过直线外一点,有且只有一条直线与已知直线平行.( ) (4)与已知直线平行且距离等于定长的直线只有两条.(
9、) (5)若一个角的两边分别与另一个角的两边平行,那么这两个角相等( ) (6)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.(),练习反馈:,2选择题 (1)“a,b是异面直线”是指ab=,且a不平行于b;a 平面a,b平面b且ab= a平面a,b平面a不存在平面a,能使aa且ba成立 上述结论中,正确的是() (A) (B) (C) (D),(2)长方体的一条对角线与长方体的棱所组成的异面直线有() (A)2对 (B)3对(C)6对(D)12对,C,C,(3)两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是() (A)一定是异面直线(B)
10、一定是相交直线 (C)可能是平行直线 (D)可能是异面直线,也可能是相交直线 (4)一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是( ) (A)平行(B)相交 (C)异面(D)相交或异面,3两条直线互相垂直,它们一定相交吗?,答:不一定,还可能异面,D,D,4.垂直于同一直线的两条直线,有几种位置关系?,答:三种:相交,平行,异面,5画两个相交平面,在这两个平面内各画一条直线使它们成为(1)平行直线;(2)相交直线;(3)异面直线,6选择题 (1)分别在两个平面内的两条直线间的位置关系是( ) (A)异面(B)平行 (C)相交(D)以上都有可能 (2)异面直线a,b满足aa,bb,ab=l, 则l与a,b的位置关系一定是( ),(A)l至多与a,b中的一条相交; (B)l至少与a,b中的一条相交; (C)l与a,b都相交; (D)l至少与a,b中的一条平行.,D,B,(3)两异面直线所成的角的范围是( ) (A)(0,90) (B)0,90) (C)(0,90(D)0,90,7判断下列命题的真假,真的打“”,假的打“” (1)两条直线和第三条直线成等角,则这两条直线平行() (2)平行移动两条异面直线中的任一条,它们所成的角不变() (3)四边相等且四个角也相等的四边形是正方形(),C,课堂小结:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年承德客运从业资格证考试模拟考试
- 吉首大学《妇幼保健学》2021-2022学年第一学期期末试卷
- 吉首大学《企业预算管理》2021-2022学年第一学期期末试卷
- 吉林艺术学院《数字摄影》2021-2022学年第一学期期末试卷
- 店铺砸墙协议书范文范本
- 吉林师范大学《中国思想史》2021-2022学年第一学期期末试卷
- 潮汕生意合作协议书范文范本
- 2022年国家公务员考试《申论》试题真题(行政执法)及答案解析
- 2022年公务员多省联考《申论》真题(广西A卷)及答案解析
- 个人合伙人合同协议书范文模板
- 须弥(短篇小说)
- 旋风除尘器设计与计算
- 《装配基础知识培训》
- 出口退税的具体计算方法及出口报价技巧
- PCB镀层与SMT焊接
- Unit 1 This is my new friend. Lesson 5 课件
- 2019年青年英才培养计划项目申报表
- 剪纸教学课件53489.ppt
- 芳香油的提取
- 劳动法讲解PPT-定稿..完整版
- 企业人才测评发展中心建设方案
评论
0/150
提交评论