高中数学 第五章 数系的扩充与复数的引入 5.1 数系的扩充与复数的引入重疑难点易错简析素材 北师大版选修2-2(通用)_第1页
高中数学 第五章 数系的扩充与复数的引入 5.1 数系的扩充与复数的引入重疑难点易错简析素材 北师大版选修2-2(通用)_第2页
高中数学 第五章 数系的扩充与复数的引入 5.1 数系的扩充与复数的引入重疑难点易错简析素材 北师大版选修2-2(通用)_第3页
高中数学 第五章 数系的扩充与复数的引入 5.1 数系的扩充与复数的引入重疑难点易错简析素材 北师大版选修2-2(通用)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、5.1 数系的扩充与复数的概念重疑难点易错简析一、知识导学1. 复数:形如的数(),复数通常用小写字母表示,即,其中叫做复数的实部,叫做复数的虚部,称做虚数单位.2. 分类:复数()中,当时,就是实数;除了实数以外的数,即当b时,叫做虚数;当,b时,叫做纯虚数.3. 复数集:全体复数所构成的集合.4. 复数相等:如果两个复数与的实部与虚部分别相等,记作:=.5. 复平面、实轴、虚轴:建立直角坐标系来表示复数的平面.在复平面内,轴叫做实轴, 轴叫做虚轴.6. 复数的模:设=,则向量的长度叫做复数的模(或绝对值),记作.(1);(2)=;(3);7共轭复数:如果两个复数的实部相等,而虚部互为相反数

2、,则这两个复数互为共轭复数.二、疑难知识导析1两个实数可以比较大小,而不全是实数的两个复数不能比较大小2则,而,则不一定成立,如时;3,而则不一定成立;4若不一定能推出;5若,则=,但若则上式不一定成立.三、经典例题导讲例1两个共轭复数的差是( ).实数 .纯虚数 .零 .零或纯虚数错解:当得到时就错误的选B,忽略了b可以为零的条件.正解:设互为共轭的两复数分别为及则 或当时,为纯虚数当时,因此应选D.注:要认真审题,看清题设条件,结论. 学会全面辩证的思考问题,准确记忆有关概念性质. 例2判断下列命题是否正确(1)若, 则(2)若且,则(3)若,则错解:(1)认为任何一个实数的平方大于零可推

3、广到复数中,从而(1)是正确的 (2)认为两实数之差大于零等价于前一个大于后一个实数,也可推到复数中来.认为两复数差为实数则这两个复数也为实数.而认为命题(2)是正确的.(3)把不等式性质错误的推广到复数中,忽略不等式是在实数中成立的前提条件. 正解:(1)错,反例设则 (2)错,反例设,满足,但不能比较大小. (3)错,故,都是虚数,不能比较大小.例3实数分别取什么值时,复数是(1)实数;(2)虚数;(3)纯虚数. 解:实部,虚部.(1)当 时,是实数;(2)当 ,且 时,是虚数;(3) 当 或 时是纯虚数 例4 设,当取何值时, (1) ; (2).分析:复数相等的充要条件,提供了将复数问

4、题转化为实数问题的依据,这是解复数问题常用的思想方法,这个题就可利用复数相等的充要条件来列出关于实数 的方程,求出 的值解:(1)由可得:解之得,即:当 时 (2)当 可得: 或 ,即 时.例5是两个不为零的复数,它们在复平面上分别对应点P和Q,且,证明OPQ为直角三角形(O是坐标原点),并求两锐角的度数分析 本题起步的关键在于对条件的处理等式左边是关于的二次齐次式,可以看作二次方程求解,也可配方解:由(,不为零),得即向量与向量的夹角为,在图中,又,设,在OPQ中,由余弦定理OPQ为直角三角形,四、典型习题导练1. 设复数z满足关系,那么z等于( )A B C D2.复数系方程有实数根,则这个实数是.3.实数m取何值时,复数是(1)纯虚数;(2)在复平面上的对应点位于第二象限4.已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论