版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、秩和比法 RSR,2015-1-23 史晓涛,评价方法系列之一 RSR,什么是“秩和比”(RSR),秩:样本秩 注意:不同于线性代数中矩阵的秩 和:求和 秩的和:Rank-Sum 比:一种运算 Ratio 秩和比是行(或列)秩次的平均值,是一个内涵丰富的统计量,表明不同计量单位多个指标的综合水平,创始人:田凤调教授于1988年提出,应用领域: 医疗卫生领域的多指标综合评价 统计预测预报 统计质量控制等方面。,秩和比综合评价法基本原理是:在一个n行m列矩阵中 ,通过对每个元素的秩进行运算,获得无量纲统计量RSR;在此基础上 ,运用 参数统计分析的概念与方法,研究RSR的分布;以及RSR值对评价对
2、象的优劣直接排序或分档排序,从而对评价对象做出综合评价.,原理,什么是无量纲统计量:,1.量纲和单位的区别: 单位是物理学基本量的不同级别 量纲是多个基本量之间的组合,例如:长度的基本量 是 m 长度的单位有 mm cm m km,例如:速度v 是长度单位和时间单位的组合 v=l/t 速度的量纲是m/s 但速度的单位却有许多种组合,2.有量纲量和无量纲量 物理量分为两类: 有量纲: 有量纲量大小与量度所选单位有关 如:长度 时间 速度 无量纲: 无量纲量与量度所选的单位无关 如:角度 应变:,RSR就是一个无量纲量,无量纲量并不是没有单位,它的单位是1,样本秩 rank 的概念:,则称k 是
3、在样本中的秩,记作 ,例如,对样本数据 -0.8,-3.1,1.1,-5.2,4.2 顺序统计量是 -5.2,-3.1,-0.8,1.1,4.2 而秩统计量是 3,2,4,1,5,1.编秩 将n个评价对象的m个评价指标排列成n行m列的原始数据表.编出每个指标各评价对象的秩。,秩和比综合评价法的步骤:,如何编秩:,RSR法在最初创立时 就是简单地用样本秩次来编秩,得到秩矩阵。 这种方法简单易懂,操作方便,但也有很大缺点: 第一是在指标转化为秩次时会使一些信息发生改变。 第二是编秩时如何正确区分高优指标、低优指标及其组合(偏高优、稍高优、偏低优、稍低优等),改进编秩方法:,对于第一个缺点: 高优指
4、标从小到大编秩 低优指标从大到小编秩 高优就是越越好的量,一般对应效益型指标,一个公司盈利越多越好,效益就是高优; 低优就是越少越好的量,一般对应成本性指标,一个公司成本越低越好,成本就是低优。,3. 同一指标数据相同者,成为相持,编平均秩.,例如,对样本数据 -0.8,-3.1,1.1,-5.2,1.1 顺序统计量是 -5.2,-3.1,-0.8,1.1,1.1 而秩统计量是 3,2,4.5,1,4.5,对于第二个缺点: 解决较为复杂: 见文章 RRS法中各指标按任意系数进行编秩的探讨 所以处理一般评价问题时,只解决第一个缺点就足够了,2. 计算秩和比(RSR):,秩和比的计算常需按行(R)
5、或按列(C)分别进行计算: 公式1或公式2,式中m为指标数,n为分组数。,一般都是使用 行秩和比进行评价,当给每一个样本秩附一个权值是,就可以求得加权秩和比(RSRw):式中w 为权重系数。 几个RSR的合并:各组RSRR合并RSR,3.计算概率单位. 编制得到RSR(或WRSR)频率分布表,列出各组频数fi,计算各组的累计频数cf和累计频率p,将p转换为概率单位Probiti , Probiti为标准正态分布的pi分位数加5.,秩矩阵,加权秩矩阵,4. 计算直线回归方程.以累积频率所对应的概率单位Probiti 为自变量,以RSRi (或WRSRi)值为因变量,计算直线回归方程,即,5.分档
6、排序.按照回归方程推算所对应的RSR(WRSR)估计值对评价对象进行分档排序.,请对某省10个地区孕产妇保健工作就3个指标进行综合评价,例,第一步:编秩,1.编秩标准:高优指标从小到大编秩,低优指标从大到小编秩,同一指标数据相同者编平均秩。 2.根据专业知识: “产前检查率”为高优指标 “孕产妇死亡率”和“围产儿死亡率”为低优指标,编秩结果:,第二步:计算秩和比并直接排序,使用行秩和比:,当计算指标权重不同时,计算加权秩和比:,通过秩和比RSR值的大小,就可以对评价对象进行综合排序,这种利用RSR综合评价指标进行排序的方法称为直接排序。但是在通常情况下还需要对评价对象进行分档,特别是当评价对象
7、很多时,如十几个或几百个评价对象,就需要通过分档排序找出RSR的分布。,RSR值及直接排序 表,第三步:确定RSR的分布、 计算概率单位(Probit),RSR的分布是指概率单位Probit表达的值特定的累计频率。 步骤: 1.编制RSR频数分布表,列出各组的频数f,计算各组的累计频数f; 2.确定各组RSR的秩次范围R及平均秩次 3.计算累计频率 ( /n)100%,最后的累计值按照 (1-1/4n)校正; 4.将百分率p换成概率单位probit:probit为p对应的标准正太分布的分位数u+5,标准正太分布与分位数,标准正态分布的密度函数与图像: 分位数:当随机变量X的分布函数为 F(x)
8、,实数满足0 1 时,分位数是使PX u=F(u)=的数u Probit=u+5,RSR分布与对应的probit值:,按照(1-1/4n)校正后的结果,按照(1-1/4n)校正后的结果,按照(1-1/4n)校正后的结果,按照(1-1/4n)校正后的结果,按照(1-1/4n)校正后的结果,按照(1-1/4n)校正后的结果,按照(1-1/4n)校正后的结果,标准正太分布表,第四步:计算直线回归方程,以累积频率所对应的概率单位Probit 为自变量,以RSR (或WRSR)值为因变量,计算直线回归方程。 用Excel中的intercept函数求截距,slope函数求斜率即可 可得:RSR=-0.61
9、+0.22probit,第五步:分档排序,按照回归方程推算对应的RSR估计值对评价对象进行分档排序 分档标准为标准正态分布的分位数,其范围在-3到3之间最好 根据各分档情况下概率单位probit值,按照回归方程推算对应的RSR估计值对评价对象进行分档排序,具体分档数根据实际情况而定,由分档结果可看出,10个地区中孕妇保健工作做的最好的差的是J地区,中档的是B、E、G、I、F,而C、H为上档,某市人民医院1983年-1992年工作质量统计指标及权重系数见表1,其中 为治愈率, 为病死率, 为周转率, 为平均病床工作日, 病床使用率, 为平均住院日,这里 和 是成本型指标,其余为效益型指标。,例,
10、表1 统计指标及权重系数,表2 编秩和加权秩和比的计算结果,表3 各组频数,累计频数,累积频率,概率单位,加权秩和比估计值,求得一元线性回归方程为:WRSR=0.0552+0.0952probit 计算得到的WRSR的估计值见表3,各年份工作质量排序见表3最后一列。,计算过程如下: clear aw=load(zhb.txt);%导入数据 w=aw(end,:);%提取权重向量 a=aw(1:end-1,:);%提取指标数据 a(:,2,6)=-a(:,2,6); %把成本型指标转换成效益型指标 ra=tiedrank(a);%对每个指标值分别编秩, %即对a的每一列分别编秩 n,m=size(a);%计算矩阵的维数 RSR=mean(ra,2)/n;%计算秩和比,w=repmat(w,n,1);%计算加权秩和比 WRSR=sum(ra.*w,2)/n; p=1:n/n;%计算累计频率 p(end)=1-1/(4*n);%修正最后一个累计频率 %最后一个累积频率按1-1/(4n)估计 probit=norminv(p,0,1)+5; %计算标准正态分布的p分位数+5,X=ones(n,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年过热蒸汽干燥设备资金申请报告
- 2023年环氧丙烷资金申请报告
- 2024年电源适配器项目资金需求报告代可行性研究报告
- 强化品德修养方面存在的问题-原因-措施
- 三维数字内容制作-三维动画材质师工作流程
- 质量月代表的发言稿(3篇)
- 校园招聘宣讲会演讲稿【汇编五篇】
- 质量分析会校长发言稿
- 新学期家长会讲话稿
- 小学英语三年级工作计划范文(3篇)
- 体育主题酒店案例
- GB∕T 3452.4-2020 液压气动用O形橡胶密封圈 第4部分:抗挤压环(挡环)
- 培智学校各科课程标准
- 单位退费申请表
- 艾尼帕·阿力马洪
- 围堰拆除施工危险源辨识
- 婴幼儿伤害预防与处理习题库
- 百度投诉保证函
- 培训经理绩效考核表
- 三甲评审文件盒资料--终稿
- 北师大二年级数学上册期中整理与复习PPT学习教案
评论
0/150
提交评论