![第五章 定积分.ppt_第1页](http://file1.renrendoc.com/fileroot2/2020-1/11/2868df4f-4c9e-4b85-b55d-916867e9801b/2868df4f-4c9e-4b85-b55d-916867e9801b1.gif)
![第五章 定积分.ppt_第2页](http://file1.renrendoc.com/fileroot2/2020-1/11/2868df4f-4c9e-4b85-b55d-916867e9801b/2868df4f-4c9e-4b85-b55d-916867e9801b2.gif)
![第五章 定积分.ppt_第3页](http://file1.renrendoc.com/fileroot2/2020-1/11/2868df4f-4c9e-4b85-b55d-916867e9801b/2868df4f-4c9e-4b85-b55d-916867e9801b3.gif)
![第五章 定积分.ppt_第4页](http://file1.renrendoc.com/fileroot2/2020-1/11/2868df4f-4c9e-4b85-b55d-916867e9801b/2868df4f-4c9e-4b85-b55d-916867e9801b4.gif)
![第五章 定积分.ppt_第5页](http://file1.renrendoc.com/fileroot2/2020-1/11/2868df4f-4c9e-4b85-b55d-916867e9801b/2868df4f-4c9e-4b85-b55d-916867e9801b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、用矩形面积近似取代曲边梯形面积,显然,小矩形越多,矩形总面积越接近曲边梯形面积,(四个小矩形),(九个小矩形),观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
2、,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,曲边梯形如图所示,,曲边梯形面积的近似
3、值为,曲边梯形面积为,实例2 (求变速直线运动的路程),思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值,(1)分割,(2)求和,(3)取极限,路程的精确值,二、定积分的定义,定义,记为,积分上限,积分下限,积分和,注意:,定理1,定理2,存在定理,根据定积分的定义,曲边梯形的面积,曲边梯形的面积的负值,定积分的几何意义,几何意义:,积分中值公式的几何解释:,解,令,于是,解,一,变速直线运动中位置函数与速度函数的联系,变速直线运动中路程为,另一方面这段路程可表示为,考察定积分,记,积分上限函数,二、积分上限函数及其导数,证,一.无穷限的广义积分 (积分区间为无
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年01月上海奉贤区面向国内外高校招录储备人才33名笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2024年12月湖南岳阳临湘市纪委监委公开选调工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2024年12月浙江杭州市城乡建设委员会公开招聘编外聘用人员1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025电力企业物资采购管理标准
- 糖尿病患者心血管多重危险因素综合管理中国专家共识课件
- Unit 4 At the farm Part A Let's talk【知识精研】人教PEP版英语四年级下册
- 《碧桂园钻石美墅》课件
- 15我们不乱扔 【知识精研】道德与法治一年级上册统编版
- (高清版)JJF(皖) 208-2025 医用硬性内窥镜光学参数校准规范
- 《财政收入》课件2
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 深圳市失业人员停止领取失业保险待遇申请表样表
- 热能与动力工程测试技术(白)课件
- (2019新教材)人教A版高中数学必修第二册全册学案
- 彩生活运营模式2016年
- 某银行安全保卫工作知识考试参考题库(500题)
- 2023年全国普通高等学校体育单招真题政治试卷(原卷+解析)
- 片剂工艺流程图
- 国家标准图集16G101平法讲解课件
- 北师大版六年级数学下册《数学好玩(全套)》公开课件
- 电机工程学报论文格式模版
评论
0/150
提交评论