迭代法求解线性方程组.ppt_第1页
迭代法求解线性方程组.ppt_第2页
迭代法求解线性方程组.ppt_第3页
迭代法求解线性方程组.ppt_第4页
迭代法求解线性方程组.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章 线性方程组的迭代解法 /* iteration methods for the solution of linear systems */,Linear systems:,A x = b,Matrix form,Ax=b A x* =b,Iterative method: given a linear system Ax=b, design an iteration formula x(k+1)=f(x(k) and choose an initial approximate solution x(0). iteration results in a series approximat

2、e solutions x(k)|kZ which approaches to the real solution x* hopefully.,How to design the iteration formula?,B is not unique, so the iteration formula is not unique!,Ax=b,x=Bx+f,Equavalent reformation,Iteration matrix,迭代法思想:第一步,第二步,B 与k无关,称为一阶定常迭代法,收敛?发散?,判断收敛的方法:,计算中判断迭代终止条件的方法:,L,U,D,6.2基本迭代法,Jaco

3、bi iteration,取M为D,Matrix form,Jacobi迭代法简单,迭代一次只需作 一次矩阵与向量的乘法即可。,Component form,Gauss-Seidel iteration 高斯塞德尔迭代法,取M为D+L,Gauss-Seidel iteration,Component form,Jacobi分量形式,comparison,迭代收敛性,定义3矩阵收敛性,Error vector of iteration,例2,How to check if a certain iteration system converges or not?,定理3迭代收敛的等价条件,Not

4、flexible to use actually,Posterior error estimated in the process of iteration,Prior errorestimated before the iteration,example,Jacobi iteration,G-S iteration,收敛速度,G-S iteration converges,example,Jacobi iteration matrix B=-D-1(L+U),G-S iteration matrix G= - (D+L)-1U,Jacobi iteration diverges,Exampl

5、e 3,G-S iteration diverges,Jacobi iteration diverges,Strictly diagonally dominantJ,G-S iteration converge,Jacobi or G-S iteration can be used to solve linear systems but sometimes it converges very slowly, how to accelerate it?,SOR:successive over relaxed methodacceleration of G-S iteration,W1,over

6、relaxed W=1,G-S,Suppose has been found by using G-S, now we have to find,SORsuccessive over relaxed methodacceleration of G-S iteration,!NOTE: The key problem in SOR is how to choose such a w that SOR converges fastest-the problem of how to choose the best relaxed factor w. Presently, the problem ha

7、s been solved for a few special matrices. For the general case, successive searching method is used. At the start, choose one or more different w to try SOR. Then modify w according to the speed of convergence and successively find the best w. Finally fix w and continue iteration. In theory, by iteration we can get approximate solution to any accuracy expected. Actually, however, due to the limit of computer word length, we cant arrive at any accuracy but the machine accuracy at most. So when we

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论