版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、172 勾股定理的逆定理一、教学目的1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的证明方法。3理解原命题、逆命题、逆定理的概念及关系。二、重点、难点1重点:掌握勾股定理的逆定理及证明。2难点:勾股定理的逆定理的证明。三、例题的意图分析例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。例2通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:先判断那条边
2、最大。分别用代数方法计算出a2+b2和c2的值。判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。四、课堂引入创设情境:怎样判定一个三角形是等腰三角形?怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。五、例习题分析例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?同旁内角互补,两条直线平行。如果两个实数的平方相等,那么两个实数平方相等。线段垂直平分线上的点到线段两端点的距离相等。直角三角形中30角所对的直角边等于斜边的一半。分析:每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言
3、的运用。理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。解略。例2证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。分析:注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。先让学生动手操作,画好图形后剪下放到一起观察能否重
4、合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。证明略。例3(补充)已知:在ABC中,A、B、C的对边分别是a、b、c,a=n21,b=2n,c=n21(n1)求证:C=90。分析:运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:先判断那条边最大。分别用代数方法计算出a2+b2和c2的值。判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。要证C=90,只要证ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n
5、42n21,c2=(n21)2= n42n21,从而a2+b2=c2,故命题获证。六、课堂练习1判断题。在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。命题:“在一个三角形中,有一个角是30,那么它所对的边是另一边的一半。”的逆命题是真命题。勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。ABC的三边之比是1:1:,则ABC是直角三角形。2ABC中A、B、C的对边分别是a、b、c,下列命题中的假命题是( )A如果CB=A,则ABC是直角三角形。B如果c2= b2a2,则ABC是直角三角形,且C=90。C如果(ca)(ca)=b2
6、,则ABC是直角三角形。D如果A:B:C=5:2:3,则ABC是直角三角形。3下列四条线段不能组成直角三角形的是( )Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=,b=,c=Da:b:c=2:3:44已知:在ABC中,A、B、C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角? a=,b=,c=; a=5,b=7,c=9;a=2,b=,c=; a=5,b=,c=1。七、课后练习,1叙述下列命题的逆命题,并判断逆命题是否正确。如果a30,那么a20;如果三角形有一个角小于90,那么这个三角形是锐角三角形;如果两个三角形全等,那么它们的对
7、应角相等;关于某条直线对称的两条线段一定相等。2填空题。任何一个命题都有 ,但任何一个定理未必都有 。“两直线平行,内错角相等。”的逆定理是 。在ABC中,若a2=b2c2,则ABC是 三角形, 是直角;若a2b2c2,则B是 。若在ABC中,a=m2n2,b=2mn,c= m2n2,则ABC是 三角形。3若三角形的三边是 1、2; ; 32,42,52 9,40,41; (mn)21,2(mn),(mn)21;则构成的是直角三角形的有( )A2个 B个个个4已知:在ABC中,A、B、C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?a=9,b=41
8、,c=40; a=15,b=16,c=6;a=2,b=,c=4; a=5k,b=12k,c=13k(k0)。八、参考答案:课堂练习:1对,错,错,对; 2D;3D; 4是,B;不是;是,C;是,A。课后练习:1如果a20,那么a30;假命题。如果三角形是锐角三角形,那么有一个角是锐角;真命题。如果两个三角形的对应角相等,那么这两个三角形全等;假命题。两条相等的线段一定关于某条直线对称;假命题。2逆命题,逆定理;内错角相等,两直线平行;直角,B,钝角;直角。 3B 4是,B;不是,;是,C;是,C。课后反思:172 勾股定理的逆定理(二)教案总序号:14 时间:一、教学目的1灵活应用勾股定理及逆
9、定理解决实际问题。2进一步加深性质定理与判定定理之间关系的认识。二、重点、难点1重点:灵活应用勾股定理及逆定理解决实际问题。2难点:灵活应用勾股定理及逆定理解决实际问题。三、例题的意图分析例1(见教材例题)让学生养成利用勾股定理的逆定理解决实际问题的意识。例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。四、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。五、例习题分析例1(见教材)分析:了解方位角,及方位名词;依题意画出图形;依题意可得PR=121.5=18,PQ=161.5=24, QR=30;因为242+18
10、2=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知QPR=90;PRS=QPR-QPS=45。小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。分析:若判断三角形的形状,先求三角形的三边长;设未知数列方程,求出三角形的三边长5、12、13;根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。解略。六、课堂练习1小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。
11、2如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?3如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40,问:甲巡逻艇的航向?七、课后练习1一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。2一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之
12、间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?3如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。八、参考答案:课堂练习:1向正南或正北。2能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2= AB2;3由ABC是直角三角形,可知CAB+CBA=90,所以有CAB=40,航向为北偏东50。 课后练习:16米,8米,10米,直角三角形;2ABC、ABD是直角三角形,AB和地面垂直。
13、3提示:连结AC。AC2=AB2+BC2=25,AC2+AD2=CD2,因此CAB=90,S四边形=SADC+SABC=36平方米。课后反思:172 勾股定理的逆定理(三)教案总序号:15 时间:一、教学目的1应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2灵活应用勾股定理及逆定理解综合题。3进一步加深性质定理与判定定理之间关系的认识。二、重点、难点1重点:利用勾股定理及逆定理解综合题。2难点:利用勾股定理及逆定理解综合题。三、例题的意图分析例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题
14、辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。四、课堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。五、例习题分析例1(补充)已知:在ABC中,A、B、C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断ABC的形状。分析:移项,配成三个完全平方;三个非负数的和为0,则都为0;已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。例2(补充)已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,
15、AD=3。求:四边形ABCD的面积。分析:作DEAB,连结BD,则可以证明ABDEDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC中,3、4、5勾股数,DEC为直角三角形,DEBC;利用梯形面积公式可解,或利用三角形的面积。例3(补充)已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。 分析:AC2=AD2+CD2,BC2=CD2+BD2AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2六、课堂练习1若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形
16、;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2若ABC的三边a、b、c,满足a:b:c=1:1:,试判断ABC的形状。3已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且ABBC。求:四边形ABCD的面积。4已知:在ABC中,ACB=90,CDAB于D,且CD2=ADBD。求证:ABC中是直角三角形。七、课后练习,1若ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求ABC的面积。2在ABC中,AB=13cm,AC=24cm,中线BD=5cm。求证:ABC是等腰三角形。3已知:如图,1=2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。求证:AB2=AE2+CE2。4已知ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定ABC的形状。 八、参考答案:课堂练习:1C;2ABC是等腰直角三角形; 3 4提示:AC2=AD2+CD2,BC2=CD2+BD2,AC2+BC2=AD2+2CD2+BD2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年家族财富继承与抚养权协议
- 2025年代理权益保护协议书案例展示总结介绍案例案例
- 2025年孕妇用品运输协议
- 2025年公路运输留置合同
- 2025版小企业劳动合同法适用范围合同范本2篇
- 二零二五年度苏晓离婚协议书:个人艺术品及收藏品的分配2篇
- 个人2024年度保险代理服务合同3篇
- 二零二五版企业间借款合同模板与债权转让协议标准范本3篇
- 二零二五年度电子政务安全电子交易SET应用合同3篇
- 2025年度鱼池租赁与渔业品牌孵化合同
- 2025年山东浪潮集团限公司招聘25人高频重点提升(共500题)附带答案详解
- 2024年财政部会计法律法规答题活动题目及答案一
- 2025年江西省港口集团招聘笔试参考题库含答案解析
- (2024年)中国传统文化介绍课件
- 液化气安全检查及整改方案
- 《冠心病》课件(完整版)
- 2024年云网安全应知应会考试题库
- 公园保洁服务投标方案
- 光伏电站项目合作开发合同协议书三方版
- 2024年秋季新沪教版九年级上册化学课件 第2章 空气与水资源第1节 空气的组成
- 香港中文大学博士英文复试模板
评论
0/150
提交评论