版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.,Object Tracking with Tracking-Learning-Detection,.,Tracking-Learning-Detection,.,return,location,locations,Object location,.,Tracking-Learning-Detection,P-N Learning Object Model Object Detection Tracker Integrator Learning Component,.,PN-learning,A classifier to be learned training set a collecti
2、on of labeled training examples supervised training a method that trains a classifier from training set (iv) P-N experts,.,PN-learning,P-expert: analyzes examples classified as negative, estimates false negatives and adds them to training set with positive label. - N-expert: analyzes examples classi
3、fied as positive, estimates false positives and adds them with negative label to the training set. -,false positives: false negatives:,.,PN-learning,P-precision P-recall N-precision N-recall,.,PN-learning,After defining the state vector and a 2x2 matrix M as,It is possible to rewrite the equations a
4、s,.,PN-learning,The P-N experts are characterized by four quality measures, . To reduce this 4D space, the parameters are set to where represents error of the expert. The transition matrix then becomes . The eigenvalues of this matrix are . Therefore the P-N learning should be improving the performa
5、nce if . The error is varied in the range,.,PN-learning,.,PN-learning,The state vector converges to zero if both eigenvalues of the transition matrixMare smaller than one.,.,PN-learning (design of real experts),In every frame, the P-N learning performs the following steps:,evaluation of the detector
6、 on the current frame estimation of the detector errors using the P-N experts update of the detector by labeled examples output by the experts.,.,PN-learning (design of real experts),structure P-expert: assumes that the object moves along a trajectory. N-expert: assumes that the object can appear at
7、 a single location only.,.,PN-learning,The car is tracked from frame to frame by a tracker. The tracker represents the P-expert that outputs positive training examples.Notice that due to occlusion of the object, the output of P-expert in time t+2 outputs incorrect positive example. N-expert identifi
8、es maximally confident patch (denoted by a red star*) and labels all other detections as negative.,.,Tracking-Learning-Detection,P-N Learning Object Model Object Detection Tracker Integrator Learning Component,.,Object Model,Object model M is a data structure that represents the object and its surro
9、unding observed so far. Similarity between two patches is defined as,.,Object Model,Nearest Neighbor (NN) classifier A patch p is classified as positive if otherwise the patch is classified as negative. A classification margin is defined as,.,Object Model,Model update (i) the patchs label estimated
10、by NN classifier is different from the label given by the P-N experts. (ii) patches where the classification margin is smaller than .,.,Tracking-Learning-Detection,P-N Learning Object Model Object Detection Tracker Integrator Learning Component,.,Object Detector,Scanning-window grid scales step = 1.
11、2, horizontal step = 10% of width, vertical step = 10% of height, minimal bounding box size = 20 pixels Cascaded classifier,.,Object Detector,Patch variance,This stage rejects all patches, for which gray-value variance is smaller than 50% of variance of the patch that was selected for tracking.,The
12、stage exploits the fact that gray-value variance of a patch p can be expressed as , and that the expected value E(p) can be measured in constant time using integral images .,patch,0,y,x,.,Object Detector,Ensemble classifer,The posteriors of individual base classifiers are averaged and the ensemble c
13、lassifies the patch as the object if the average posterior is larger than 50%,.,Object Detector,Ensemble classifer,The ensemble consists of T base classifiers. Each base classifieri performs a number of pixel comparisons on the patch resulting in a binary code x.,.,Object Detector,Nearest neighbor c
14、lassifier,After filtering the patches by the variance filter and the ensemble classifier, we are typically left with several of bounding boxes that are not decided yet.Therefore, we can use the online model and classify the patch using a NN classifier. A patch is classified as the object if,.,Tracki
15、ng-Learning-Detection,P-N Learning Object Model Object Detection Tracker Integrator Learning Component,.,Tracker,Median-Flow(pyramidal Lucas-Kanade Tracker) The tracker estimates displacements of a number of points within the objects bounding box, estimates their reliability, and votes with 50% of t
16、he most reliable displacements for the motion of the bounding box using median. Failure detection,A residual of a single displacement is defined as . A failure of the tracker is declared if median pixel.,.,Tracking-Learning-Detection,P-N Learning Object Model Object Detection Tracker Integrator Lear
17、ning Component,.,Integrator,Integrator combines the bounding box of the tracker and the bounding boxes of the detector into a single bounding box output by TLD. If neither the tracker not the detector output a bounding box, the object is declared as not visible. Otherwise the integrator outputs the
18、maximally confident bounding box (using ) .,return,.,Tracking-Learning-Detection,P-N Learning Object Model Object Detection Tracker Integrator Learning Component,.,Learning component,Initialization P-expert N-expert,.,Learning component,.,Learning component,Initialization 1. the inital bounding box
19、10 bounding boxes 10 x20 positive patches 2. Negative patches are collected from the surrounding of the initializing bounding box,.,Learning component,Illustration of P-expert: a) object model and the core in feature space(gray blob), b) unreliable(dotted)and reliable(thick) trajectory, c) the object model and the core after the update.Red dots are positive examples, black dots are
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026徽商集团招聘1人考试参考题库及答案解析
- 2026广西壮族自治区人民医院防城港医院防城港市第一人民医院补充招聘食堂面点师2人考试参考题库及答案解析
- 2026渤海银行南京分行招聘考试备考试题及答案解析
- 2026中国科学院地球环境研究所特别研究助理(博士后)人才招聘考试备考题库及答案解析
- 2026中石安环公司寒假实习生招募考试参考试题及答案解析
- 2026江苏盐城市阜宁县科技成果转化服务中心选调10人考试参考题库及答案解析
- 2026年临沧市住房和城乡建设局招聘公益性岗位工作人员(4人)考试参考试题及答案解析
- 2026吉安井冈农业生物科技有限公司招聘见习1人笔试备考题库及答案解析
- 2026四川成都市西南石油大学校医院(成都校区)招聘2人考试参考题库及答案解析
- 2026安徽消防中控员考试参考题库及答案解析
- 2026年四川单招单招考前冲刺测试题卷及答案
- 2026年全国公务员考试行测真题解析及答案
- (2025)70周岁以上老年人换长久驾照三力测试题库(附答案)
- 2026年泌尿护理知识培训课件
- 昆山钞票纸业有限公司2026年度招聘备考题库附答案详解
- GB/T 46793.1-2025突发事件应急预案编制导则第1部分:通则
- 2026元旦主题班会:马年猜猜乐马年成语教学课件
- 2025年中国工艺美术馆面向社会招聘工作人员2人笔试历年典型考题及考点剖析附带答案详解
- JJF 1147-2006消声室和半消声室声学特性校准规范
- GB/T 3630-2006铌板材、带材和箔材
- GB/T 2951.11-2008电缆和光缆绝缘和护套材料通用试验方法第11部分:通用试验方法-厚度和外形尺寸测量-机械性能试验
评论
0/150
提交评论