




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2020年宁波市高三第三次模拟试卷22题)已知函数.(1) 若为的极值点,求实数的值;(2) 若在上增函数,求实数的取值范围;(3) 若时,方程有实根,求实数的取值范围。解:(1)因为是函数的一个极值点,所以,进而解得:,经检验是符合的,所以 (2)显然结合定义域知道在上恒成立,所以且。同时此函数是时递减,时递增, 故此我们只需要保证,解得:(3)方法一、变量分离直接构造函数解:由于,所以:
2、当时,所以在上递增;当时,所以在上递减; 又 当时,所以在上递减;当时,所以上递增;当时,所以在上递减;又当时,当时,则且的取值范围为原函数草图二阶导数草图一阶导数草图,方法二、 构造: 从而在上为增函数;从而在上为减函数 而 分析点评:第(3)问的两种解法难易繁杂一目了然,关键在合理构造函数上。那么怎样合理构造函数呢?(1)抓住问题的实质,化简函数1、已知是二次函数,不等式的解集是,且在区间上的最大值. (1)求的解析式;(2)是否存在自然数,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有的值;若不存在,请说明理由。解:(1) (2)假设满足要求的实数存在,则,即有: ,即有:构
3、造函数 画图分析:进而检验,知,所以存在实数使得在区间内有且只有两个不等的实数根。点评:本题关键是构造了函数,舍弃了原函数中分母问题得到了简化。变式练习:设函数,求已知当时,恒成立,求实数的取值范围。(2)抓住常规基本函数,利用函数草图分析问题:例: 已知函数的图像在点处的切线方程为设(1) 求证:当时,恒成立;(2) 试讨论关于的方程根的个数。解证:(1) (2)方程从而 因为所以方程可变为 令,得: 当时,在上为增函数;当时,在上为减函数;当时, 又所以函数在同一坐标系的大致图像如图所示 当即时,方程无解; 当即时,方程一解; 当即时,方程有2个根。分析点评:一次函数,二次函数,指对数函数
4、,幂函数,简单的分式根式函数,绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化明确化。(3)复合函数问题一定要坚持定义域优先的原则,抓住函数的复合过程能够逐层分解。例:已知函数在区间上单调递减,在区间上单调递增。(1) 求实数的值.(2) 若关于的方程有3个不同的实数解,求实数的取值范围.(3) 若函数的图像与坐标轴无交点,求实数的取值范围。解:(1)利用 得: (2)因为 得 列表得因此有极大值极小值作出的示意图,如图:因为关于的方程有3个不同的实数解,令即关于的方程在上有3个不同的实数解,所以的图像与直线在上有3个不同的交点。而的图像与的图像一致。即(3)函数的图像与坐标轴无交点,可以分以下2种情况:当函数的图像与轴无交点时,则必须有无解,而函数的值域为所以解得当函数的图像与轴无交点时,则必须有不存在,即或,有意义,所以,解得. 由函数存在,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度建筑工程合同监理实施办法
- 2025年度商场顾客满意度调查与提升合同
- 2025年度房屋租赁安全免责合同(带宠物)
- 2025年导电银浆行业现状分析:导电银浆市场复合年增长率为20.12%
- 2024-2025学年福建省福州福清市高一上学期期中考试生物试卷
- 生鲜供货通知函
- 2025年建筑安全员-C证考试(专职安全员)题库及答案
- 2025年湖南大众传媒职业技术学院单招职业技能测试题库新版
- 2025年合肥幼儿师范高等专科学校单招职业技能测试题库附答案
- 2025年广西职业技术学院单招职业技能测试题库及参考答案
- 社会稳定风险评估 投标方案(技术方案)
- 高层建筑火灾扑救面临问题及对策
- JTT791-2010 公路涵洞通道用波纹钢管(板)
- JC-T 738-2004水泥强度快速检验方法
- 山东省春季高考技能考试-汽车专业必刷必练题库(600题)
- 人教鄂教版小学科学四年级下册全册教案
- 2024年黑龙江农垦科技职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 人民音乐家 教案-2023-2024学年高中人音版(2019)必修《音乐鉴赏》
- 国家义务教育质量监测心理健康和德育测试题
- 绝经综合征(中医)评定量表
- 扬帆蓝天无人机法律法规与应用培训教案课件
评论
0/150
提交评论