版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2010年高考解答题题型训练函数、导数、不等式1.(2009年广东卷文)(本小题满分14分)已知二次函数的导函数的图像与直线平行,且在=1处取得最小值m1(m).设函数(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值(2) 如何取值时,函数存在零点,并求出零点.解 (1)设,则; 又的图像与直线平行 又在取极小值, , , ; , 设 则 ; (2)由, 得 当时,方程有一解,函数有一零点; 当时,方程有二解,若, 函数有两个零点;若, ,函数有两个零点; 当时,方程有一解, , 函数有一零点 2(2009浙江理)(本题满分14分)已知函数,其中 (I)设函数若在区间上不单调,求
2、的取值范围; (II)设函数 是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由解 (I)因,因在区间上不单调,所以在上有实数解,且无重根,由得 ,令有,记则在上单调递减,在上单调递增,所以有, 于是,得,而当时有在 上有两个相等的实根,故舍去,所以; (II)当时有;当时有,因为当时不合题意,因此,下面讨论的情形,记A,B=()当时,在上单调递增,所以要使成立,只能且,因此有,()当时,在上单调递减,所以要使成立,只能且,因此,综合()();当时A=B,则,即使得成立,因为在上单调递增,所以的值是唯一的;同理,即存在唯一的非零实数,要使成立
3、,所以满足题意 3(2009江苏卷)(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.解 本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分(1)若,则(2)当时, 当时, 综上(3)时,得,当时,;当时,0,得:讨论得:当时,解集为;当时,解集为;当时,解集为.4设函数()求曲线在点处的切线方程;()求函数的单调区间;()若函数在区间内单调递增,求的取值范围. 解析 本题主要考查利用导数研究函数的单调
4、性和极值、解不等式等基础知识,考查综合分析和解决问题的能力(),曲线在点处的切线方程为.()由,得, 若,则当时,函数单调递减,当时,函数单调递增, 若,则当时,函数单调递增, 当时,函数单调递减,()由()知,若,则当且仅当,即时,函数内单调递增,若,则当且仅当,即时,函数内单调递增,综上可知,函数内单调递增时,的取值范围是.5已知函数的图象在与轴交点处的切线方程是。(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.【解析】(I)由已知,切点为(2,0),故有,即又,由已知得联立,解得.所以函数的解析式为 4分(II)因为令当函数有极值时
5、,则,方程有实数解, w.w.w.k.s.5.u.c.o.m 由,得.当时,有实数,在左右两侧均有,故函数无极值当时,有两个实数根情况如下表:+0-0+极大值极小值所以在时,函数有极值;当时,有极大值;当时,有极小值; 12分6已知函数在是增函数,在(0,1)为减函数(I)求、的表达式;(II)求证:当时,方程有唯一解;(III)当时,若在内恒成立,求的取值范围解:(I),依题意在上恒成立即 在上恒成立, (, 又依题意在时恒成立, 即,恒成立(), ,由、得 (II)由(1)可知,方程,设, 令,并由得 解得 令由 列表分析: -+递减递增知在处有一个最小值0,当时,0在(0,+)上只有一个
6、解即当x0时,方程有唯一解(III)设 则 在上为减函数, 又 所以为所求范围7.(2009全国卷理)本小题满分12分。(注意:在试题卷上作答无效)设函数在两个极值点,且(I)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;(II)证明:分析(I)这一问主要考查了二次函数根的分布及线性规划作可行域的能力。大部分考生有思路并能够得分。由题意知方程有两个根则有故有 右图中阴影部分即是满足这些条件的点的区域。(II)这一问考生不易得分,有一定的区分度。主要原因是含字母较多,不易找到突破口。此题主要利用消元的手段,消去目标中的,(如果消会较繁琐)再利用的范围,并借助(I)中的约束条
7、件得进而求解,有较强的技巧性。解析 由题意有又消去可得又,且 8(2009浙江文)(本题满分15分)已知函数 (I)若函数的图象过原点,且在原点处的切线斜率是,求的值; (II)若函数在区间上不单调,求的取值范围解析 ()由题意得 又 ,解得,或 ()函数在区间不单调,等价于 导函数在既能取到大于0的实数,又能取到小于0的实数 即函数在上存在零点,根据零点存在定理,有 , 即: 整理得:,解得9(2009北京文)(本小题共14分)设函数.()若曲线在点处与直线相切,求的值;()求函数的单调区间与极值点.解析 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题
8、的能力(),曲线在点处与直线相切,(),当时,函数在上单调递增,此时函数没有极值点.当时,由,当时,函数单调递增,当时,函数单调递减,当时,函数单调递增,此时是的极大值点,是的极小值点.10.(2009山东卷文)(本小题满分12分)已知函数,其中 (1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.解: (1)由已知得,令,得,要取得极值,方程必须有解,所以,即, 此时方程的根为,所以 当时,x(-,x1)x 1(x1,x2)x2(x2,+)f(x)00f (x)增函数极大值减函数极小值增函数所以在x 1, x2处分别取得极大值和极小值.当时, x(-,x2
9、)x 2(x2,x1)x1(x1,+)f(x)00f (x)减函数极小值增函数极大值减函数所以在x 1, x2处分别取得极大值和极小值.综上,当满足时, 取得极值. (2)要使在区间上单调递增,需使在上恒成立.即恒成立, 所以设,令得或(舍去), 当时,当时,单调增函数;当时,单调减函数,所以当时,取得最大,最大值为.所以当时,此时在区间恒成立,所以在区间上单调递增,当时最大,最大值为,所以综上,当时, ; 当时, 【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用
10、函数与方程的思想,化归思想和分类讨论的思想解答问题.11.设函数,其中常数a1()讨论f(x)的单调性;()若当x0时,f(x)0恒成立,求a的取值范围。 解析 本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。解析 (I) 由知,当时,故在区间是增函数;当时,故在区间是减函数; 当时,故在区间是增函数。 综上,当时,在区间和是增函数,在区间是减函数。 (II)由(I)知,当时,在或处取得最小值。由假设知 即 解得 1a6故的取值范围是(1,6)12.(200
11、9广东卷理)(本小题满分14分)已知二次函数的导函数的图像与直线平行,且在处取得极小值设(1)若曲线上的点到点的距离的最小值为,求的值;(2)如何取值时,函数存在零点,并求出零点 解析 (1)依题可设 (),则; 又的图像与直线平行 , , 设,则 当且仅当时,取得最小值,即取得最小值当时, 解得 当时, 解得 (2)由(),得 当时,方程有一解,函数有一零点;当时,方程有二解,若,函数有两个零点,即;若,函数有两个零点,即;当时,方程有一解, , 函数有一零点 综上,当时, 函数有一零点;当(),或()时,函数有两个零点;当时,函数有一零点.13(2009江西卷文)(本小题满分12分)设函数
12、 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围 解析 (1) , 因为, 即 恒成立, 所以 , 得,即的最大值为 (2) 因为 当时, ;当时, ;当时, ; 所以 当时,取极大值 ; 当时,取极小值 ; 故当 或时, 方程仅有一个实根. 解得 或.14(2009江西卷理)(本小题满分12分)设函数(1)求函数的单调区间; (1)若,求不等式的解集解析 (1), 由,得 .因为 当时,; 当时,; 当时,;所以的单调增区间是:; 单调减区间是: .(2)由 , 得:. 故:当 时, 解集是:;当 时,解集是: ;当 时, 解集是:. 15(2009天津卷
13、文)(本小题满分12分)设函数()当曲线处的切线斜率()求函数的单调区间与极值;()已知函数有三个互不相同的零点0,且。若对任意的,恒成立,求m的取值范围。答案 (1)1(2)在和内减函数,在内增函数。函数在处取得极大值,且=函数在处取得极小值,且=解析 解析 当所以曲线处的切线斜率为1. (2)解析 ,令,得到因为当x变化时,的变化情况如下表:+0-0+极小值极大值在和内减函数,在内增函数。函数在处取得极大值,且=函数在处取得极小值,且=(3)解析 由题设, 所以方程=0由两个相异的实根,故,且,解得因为若,而,不合题意若则对任意的有则又,所以函数在的最小值为0,于是对任意的,恒成立的充要条
14、件是,解得 综上,m的取值范围是【考点定位】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力。16.(2009四川卷文)(本小题满分12分)已知函数的图象在与轴交点处的切线方程是。(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.解析 (I)由已知,切点为(2,0),故有,即又,由已知得联立,解得.所以函数的解析式为 4分(II)因为令当函数有极值时,则,方程有实数解, 由,得.当时,有实数,在左右两侧均有,故函数无极值当时,有两个实数根情况如下表:+0-0+极大值极小值
15、所以在时,函数有极值;当时,有极大值;当时,有极小值; 12分17.(2009全国卷理)(本小题满分12分)设函数有两个极值点,且(I)求的取值范围,并讨论的单调性;(II)证明: 解: (I) 令,其对称轴为。由题意知是方程的两个均大于的不相等的实根,其充要条件为,得当时,在内为增函数; 当时,在内为减函数;当时,在内为增函数;(II)由(I),设,则当时,在单调递增;当时,在单调递减。 故 18。3(2009湖南卷文)(本小题满分13分)已知函数的导函数的图象关于直线x=2对称.()求b的值;()若在处取得最小值,记此极小值为,求的定义域和值域。解: ().因为函数的图象关于直线x=2对称
16、,所以,于是 ()由()知,.()当c 12时,此时无极值。 (ii)当c12时,有两个互异实根,.不妨设,则2.当x时, 在区间内为增函数; 当x时,在区间内为减函数;当时,在区间内为增函数. 所以在处取极大值,在处取极小值.因此,当且仅当时,函数在处存在唯一极小值,所以.于是的定义域为.由 得.于是 .当时,所以函数在区间内是减函数,故的值域为 19(2009辽宁卷文)(本小题满分12分)设,且曲线yf(x)在x1处的切线与x轴平行。(2)求a的值,并讨论f(x)的单调性;(1)证明:当 解析 ().有条件知,故. 2分 于是.故当时,0; 当时,0.从而在,单调减少,在单调增加. 6分(
17、)由()知在单调增加,故在的最大值为,最小值为. 从而对任意,有. 10分 而当时,. 从而 12分20(2009辽宁卷理)(本小题满分12分)已知函数f(x)=xax+(a1),。(1)讨论函数的单调性; (2)证明:若,则对任意x,x,xx,有。解析 (1)的定义域为。2分(i)若即,则故在单调增加。(ii)若,而,故,则当时,;当及时,故在单调减少,在单调增加。(iii)若,即,同理可得在单调减少,在单调增加.(II)考虑函数 则由于1a1,则不恒成立.所以使恒成立的a的取值范围是 26.(2009天津卷理)(本小题满分12分) 已知函数其中(1)当时,求曲线处的切线的斜率; (2)当时
18、,求函数的单调区间与极值。 本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。(I)解析 (II) 以下分两种情况讨论。(1),则.当变化时,的变化情况如下表:+00+极大值极小值 (2),则,当变化时,的变化情况如下表:+00+极大值极小值 27.(2009四川卷理)(本小题满分12分)已知函数。(I)求函数的定义域,并判断的单调性;(II)当(为自然对数的底数)时,设,若函数的极值存在,求实数的取值范围以及函数的极值。本小题主要考查函数、数列的极限、导数应用等基础知识、考查分类整合思想、推理和运算能力。解析 (
19、)由题意知当当当.(4分)()因为由函数定义域知0,因为n是正整数,故0a1,证明对任意的c,都有M2: ()若MK对任意的b、c恒成立,试求k的最大值。本小题主要考察函数、函数的导数和不等式等基础知识,考察综合运用数学知识进行推理论证的能力和份额类讨论的思想(满分14分)(I)解析 ,由在处有极值可得解得或若,则,此时没有极值;若,则当变化时,的变化情况如下表:10+0极小值极大值当时,有极大值,故,即为所求。()证法1:当时,函数的对称轴位于区间之外。在上的最值在两端点处取得故应是和中较大的一个即证法2(反证法):因为,所以函数的对称轴位于区间之外,在上的最值在两端点处取得。故应是和中较大
20、的一个假设,则 将上述两式相加得:,导致矛盾,()解法1:(1)当时,由()可知;(2)当时,函数)的对称轴位于区间内, 此时由有若则,于是若,则于是综上,对任意的、都有而当时,在区间上的最大值故对任意的、恒成立的的最大值为。 解法2:(1)当时,由()可知; (2)当时,函数的对称轴位于区间内,此时 ,即下同解法1.(2009安徽卷理)(本小题满分12分) 已知函数,讨论的单调性.本小题主要考查函数的定义域、利用导数等知识研究函数的单调性,考查分类讨论的思想方法和运算求解的能力。本小题满分12分。解析 的定义域是(0,+), 设,二次方程的判别式. 当,即时,对一切都有,此时在上是增函数。当
21、,即时,仅对有,对其余的都有,此时在上也是增函数。 当,即时,方程有两个不同的实根,.+0_0+单调递增极大单调递减极小单调递增此时在上单调递增, 在是上单调递减, 在上单调递增.25.(2009安徽卷文)(本小题满分14分) 已知函数,a0, ()讨论的单调性; ()设a=3,求在区间1,上值域。期中e=2.71828是自然对数的底数。【思路】由求导可判断得单调性,同时要注意对参数的讨论,即不能漏掉,也不能重复。第二问就根据第一问中所涉及到的单调性来求函数在上的值域。解析 (1)由于令 当,即时, 恒成立.在(,0)及(0,)上都是增函数.当,即时 由得或 或或又由得综上当时, 在上都是增函
22、数.当时, 在上是减函数, 在上都是增函数.(2)当时,由(1)知在上是减函数.在上是增函数.又 函数在上的值域为 16.(2009湖北卷理)(本小题满分14分) (注意:在试题卷上作答无效) 在R上定义运算(b、c为实常数)。记,.令. 如果函数在处有极什,试确定b、c的值;求曲线上斜率为c的切线与该曲线的公共点;记的最大值为.若对任意的b、c恒成立,试示的最大值。 解 当得对称轴x=b位于区间之外 此时由 若于是若,则,于是综上,对任意的b、c都有而当,时,在区间上的最大值 故对任意的b,c恒成立的k的最大值为 35.(2009福建卷理)(本小题满分14分)已知函数,且 (1) 试用含的代
23、数式表示b,并求的单调区间;(2)令,设函数在处取得极值,记点M (,),N(,),P(), ,请仔细观察曲线在点P处的切线与线段MP的位置变化趋势,并解释以下问题:(I)若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;(II)若存在点Q(n ,f(n), x n1时, 当x变化时,与的变化情况如下表:x+单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为。当时,此时有恒成立,且仅在处,故函数的单调增区间为R当时,同理可得,函数的单调增区间为和,单调减区间为 综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为.()由得令得由(1)得增区间为和,单调减区间为,所以函数在处取得极值,故M()N()。观察的图象,有如下现象:当m从-1(不含-1)变化到3时,线段MP的斜率与曲线在点P处切线的斜率之差Kmp-的值由正连续
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哺乳期解除劳动合同协议范本
- 2024年房屋补漏维修工程合同
- 2024专项资金借款的合同范本
- 员工聘用合同协议书范文2024年
- 建设工程内部承包合同书2024年
- 2024新款供货合同协议书
- 2024【流动资金外汇借贷合同】公司流动资金合同
- 2024年公司股东之间借款合同实例
- 专业房屋买卖合同模板大全
- 2024年事业单位聘用
- 人教版(2024新版)七年级上册数学期中模拟检测试卷(含答案)
- 2024人工智能技术在内容创作和营销领域的应用及影响分析报告
- 《篮球原地运球 行进间运球》教案(共三篇)
- 2024-2030年中国裸眼3D行业市场全景调研与竞争格局分析报告
- 2025年九省联考新高考 政治试卷(含答案解析)
- 2024年统编版小学六年级《道德与法治》上册第四单元 法律保护我们健康成长 9.《知法守法 依法维权》 第一课时 课件
- 期中测试卷-2024-2025学年语文六年级上册统编版
- 学校消防系统维保及检测总体服务方案
- 网络安全试题题库及参考答案
- 终极战略规划指南:深度剖析Cross SWOT分析、市场洞察与内部能力优化的综合行动方案
- 《白描花卉妙笔生》 课件 2024-2025学年岭南美版(2024) 初中美术七年级上册
评论
0/150
提交评论